

Jumpstart Session 3: Midterm Content Review

with Tiffany Jones & Josh Kaspar

Don't be shy! Talk to us in the **Chat** section

Chat

Q&A Polls Handouts Private

Sarah Thomas

6:45p

Hey guys! Be on the lookout for an invite to the next session in our webinar series!

Anna Lopez

6:46p

Sounds great Sarah, looking forward to that

Peter Davis

6.470

Post your questions in the **Q&A** Section and upvote your favorite questions.

Q&A Polls Handouts Chat Private Sarah Thomas 6:45p Hey guys! Be on the lookout for an invite to the next session in our webinar series! Anna Lopez 6:46p Sounds great Sarah, looking forward to that Peter Davis 6.47p

Download your handouts and links in the **Handouts** tab.

All sessions **will be recorded** and sent to you via email.

WATCH THE RECORDING

Welcome – Who Are You?

- Mr. Joshua Kaspar
- 10 Years of AP Biology
- Florida
- B.A. in Science Education – Biology
- AP teacher trainer and mentor

Welcome – Who Are You?

Mrs. Tiffany Jones

- 11 years of AP Biology
- Georgia
- AP Reader
- B.S. in Biology
- Ed.S. in Instructional Tech

AP Bio Penguins Resources

- 316 page Review Guide
- 60+ Quizizz Games
- Topic TikTok Videos
- Review PowerPoints
- Review Videos
 <u>www.apbiopenguins.weebly.com</u>
 @apbiopenguins (IG, TT, YT)

Semester 1 Suggested topics

Unit	Торіс		Exam	n Weight	
1	Chemistry of Life			8–11%	
2	Cell Structure and Function			10–13%	
3	Cellular Energetics			12–16%	
4	Cell Communication and C	Cell Cycle	10–15%		
		Don't worry if teacher has covered these	your sn't e yet!		

Unit 1: Chemistry of Life

Main Idea: Living systems are organized into a hierarchy

<u>Be able to:</u>

 Explain how the properties of water that result from its polarity and hydrogen bonding affect its biological function.

Water is polar which causes hydrogen bonding

Partial positive charge

Living systems depend on the special properties of water

Due to polarity and hydrogen bonding

- Cohesion > Capillary action
- Adhesion -
- Surface tension
- High specific heat capacity
- Solid is less dense
- Universal solvent
 - supports reactions

Unit 1: Chemistry of Life

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

- Describe the composition of macromolecules
- Name the monomers of macromolecules and describe their properties
 - Including the types of bonds that connect them

Structure and function of polymers are derived from the way their monomers are assembled

A polymer is a long-chain molecule made up of a repeated pattern of monomers.

Synthesized via dehydration synthesis (condensation)

Decomposed via hydrolysis

Synthesized via dehydration synthesis (condensation)

Decomposed via hydrolysis

Proteins

- Serve crucial functions in essentially all biological processes
- Monomer: Amino Acid (20 kinds) Polymer: Polypeptide
- 'R' group determines identity and function of the amino acid Hydrogen

Carbohydrates

- Monomer: Monosaccharide
- Polymer: Polysaccharide

Starch

Glycogen

Cellulose (fiber)

Nucleic Acids

- Monomer: nucleotide
- Polymer: nucleic acid (i.e. DNA, RNA)

Polymer	Example	Monomer	Function	Elements
Protein	Keratin, Hemoglobin, Histones, etc	Amino acid	Vast array of biological structures and functions	CHON
Carbohydrates	Sugars, starch, cellulose, etc	Mono- saccharide	Structure, short-term energy storage	СНО
Lipids	Waxes, oils, fats	No monomer/ polymer structure	Long-term energy storage, membrane structure	CHO(P)
Nucleic acids	DNA, RNA	Nucleotide	encode biological information	CHONP

Unit 1: Chemistry of Life

Main Idea: Living systems are organized into a hierarchy

<u>Be able to:</u>

• Explain how a change in a monomer can affect the polymer that it is part of.

The function of biological molecules is determined by their structure

• ... which is determined by the sequence and orientation of their monomers

4 levels of protein structure

Because proteins have such complex structures, their organization is considered at 4 levels of resolution.

Each level is a result of different interactions among amino acids.

Unit 1: Chemistry of Life

Main Idea: Organisms pass genetic information on to the next generation

<u>Be able to:</u>

 Compare and contrast the structure and function of DNA and RNA

Nucleic acid structure

Each nucleotide has:

- a five-carbon sugar (deoxyribose or ribose)
- a phosphate
- a nitrogen base

 adenine, thymine, guanine, cytosine or uracil
 You don't need to memorize the structures of the different nucleotides outside of knowing which are purines/pyrimidines and the number of hydrogen bonds they form

DNA vs. RNA

1. DNA sugar is **deoxyribose**, RNA is **ribose**.

Nucleic Acid Directionality

3' end = hydroxyl group
5' end = phosphate

2 strands are "**antiparallel**" in orientation.

Unit 1 Quizizz Game Codes

1.1: 5712 3747 1.2: 2042 3587 1.3: 5135 6579 1.4: 1570 4995 1.5: 5659 9459 1.6: 5455 1459 Compiled: 2794 6283

Unit 2: Cell Structure and Function

Main Idea: Living systems are organized into a hierarchy

<u>Be able to:</u>

- Describe the structure and function of organelles
- Explain how organelles and other structures contribute to cell function
 - Especially the ones that capture and store energy

Nucleus

Structure:

- Double membrane (nuclear envelope) with pores Functions:
- Stores genetic information (DNA)
- Synthesis of RNA
- Ribosome subunit assembly

Rough ER

Structure:

- Membrane studded with ribosomes attached to nuclear envelope Functions:
- Site of membrane-bound protein and secreted protein synthesis
- Cell compartmentalization
- Mechanical support
- Role in intracellular transport

Smooth ER

Structure:

 Folded, tubelike structure (cisternae)

Functions:

- Detoxification
- Calcium Storage
- Lipid synthesis

Structure:

• Membrane-bound structure composed on flattened sacs (cisternae)

Functions:

- Folding and chemical modification of synthesized proteins
- Packaging protein traffic
 Golgi Complex

Structure:

- Composed of rRNA and protein
- Large & small subunits
- Types: bound or free (cytoplasmic)

Functions:

• Protein synthesis

Ribosomes

Mitochondria

Structure:

Double membrane
 (outer: smooth; inner: highly folded)

Functions:

- Site of oxidative phosphorylation (cristae/inner membrane)
- Site of Krebs Cycle (matrix)

Cellular Organelles

Structure:

• Double outer membrane (thylakoid sac stacked: grana and fluid: stroma)

Functions:

- Site of photosynthesis
- Thylakoid: Light Reactions
- Stroma: Calvin-Benson Cycle

Chloroplast

Mitochondria

Structure:

Double membrane
 (outer: smooth; inner: highly folded)

Functions:

- Site of oxidative phosphorylation (cristae/inner membrane)
- Site of Krebs Cycle (matrix)

Lysosome

Structure:

 membrane-enclosed sacs that contain hydrolytic enzymes

Functions:

 Intracellular digestion (recycle cell organic materials & programmed cell death: apoptosis)

Structure:

membrane-bound sac

Functions:

- storage and release of macromolecules and cellular waste products
- Central: water retention turgor pressure
- Contractile: osmoregulation (protist)
- Food: phagocytosis, fuse with lysosome Vacuole

Structure:

• Double outer membrane (thylakoid sac stacked: grana and fluid: stroma)

Functions:

- Site of photosynthesis
- Thylakoid: Light Reactions
- Stroma: Calvin-Benson Cycle

Chloroplast

Unit 2: Cell Structure and Function

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

- Explain why smaller cells are more efficient due to their surface-are-to-volume ratio
- Explain the special structures that organisms use to increase their efficiency
Surface area-to-volume ratios affect diffusion across the membrane

As cells increase in volume, the relative surface area decreases.

sides = 3 surface = $3^2 \times 6 = 54$ volume = $3^3 = 27$ sides = 2 surface = $2^2 \times 6 = 24$ volume = $2^3 = 3$

sides = 1 surface = $1^2 \times 6 = 6$

volume = $1^3 = 1$

The surface area of the plasma membrane must be large enough to adequately exchange materials

- smaller cells have a more favorable surface area-to-volume ratio for exchange of materials with the environment.
- More complex cells are larger and demand more resources
- Solution: specialized cellular structures

Unit 2: Cell Structure and Function

Main Idea: The cell membrane separates the inside of the cell from the environment

<u>Be able to:</u>

- Explain role phospholipids and proteins play in the cell membrane
- Describe the fluid mosaic model

Cell membranes separate the internal environment from the external environment

- Selective permeability is a direct consequence of membrane structure
 - Fluid mosaic model phospholipids slide around each other and are embedded with proteins

Structural framework of the membrane

- phospholipid molecules
 - glycerol attached to a phosphate and two carbon chains
 - amphipathic
- embedded proteins
 - can span membrane or face one side
- cholesterol
 - adds structure, decreases fluidity
- glycoproteins and glycolipids
 - carbohydrate bound to a protein (or lipid)
 - uses include signaling, structure, and protection

Unit 2: Cell Structure and Function

Main Idea: The cell membrane separates the inside of the cell from the environment

<u>Be able to:</u>

- Explain how concentration gradient affects the movement of molecules across the membrane
- Explain how cells move polar and charged particles across the membrane

Passive transport does not require energy

- Passive transport
- Movement of molecules from high concentration to low concentration
- "down" the concentration gradient
- does not require energy
- Used for
- Import of resources
 - ex. oxygen, water, hormones
- Export of waste
 - ex. carbon dioxide, lactic acid

Facilitated diffusion is a type of passive transport

- Requires transmembrane proteins
 - specific to the substance that is transported
- Does not require ATP
- ex. glucose transporters

Active Transport requires energy

- Via membrane proteins
- "Up" the concentration gradient
- Requires energy
 - Usually ATP
- Polar, charged, molecules and proteins
 - Example: Na⁺ / K⁺ pump

Unit 2: Cell Structure and Function

Main Idea: The cell membrane separates the inside of the cell from the environment

<u>Be able to:</u>

- Describe the mechanisms that cells use to:
 - Maintain water and solute balance
 - Move large molecules across the membrane
- Use the structure of a molecule to predict if/how it will pass through the membrane

Osmosis

Across a membrane, water moves from areas of low solute concentration, to areas of high solute concentration

Endocytosis and exocytosis move large molecules

Exocytosis

- Movement of large molecules <u>out of the cell</u>
- Internal vesicles fuse with the plasma membrane
- Ex. Neurotransmitters
- Endocytosis Movement of large molecules into the cell

Unit 2 Quizizz Game Codes

2.1: 2661 1043
2.2: 0563 9523
2.3: 2241 6739
2.4: 3080 5347
2.5: 0354 2371
2.6: 0773 6675

2.7: 2451 3891
2.8: 6645 6931
2.9: 6645 6931
2.10: 6645 6931
2.11: 0511 5235

Compiled: 3641 0155

Unit 3: Cellular Energetics

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

- Explain how enzymes increase the rate of biological reactions
- Explain how changes to the structure of an enzyme may affect its function.
- Explain how environment of the cell can affect enzyme activity

Enzymes are Catalysts

Increase rate of the reaction by lowering activation energy (E_{Δ})

• Not changed by the reaction

Enzyme action

Orient reactants to each other
 o increase chances of proper collision

- The molecule they act on is called a substrate
- Can combine or break down molecules

Competitive Inhibition

Inhibitor prevents binding of substrate

(a) Reaction

Allosteric inhibition causes a conformational change in the enzyme which prevents binding of the substrate

Environmental Influences on Enzyme Function

Enzymes are (usually) proteins

- The local environment can affect the shape of the enzyme, which will affect its function.
- Ex. Temperature and pH

Unit 3: Cellular Energetics

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

• Describe the role of energy in living organisms

Living systems do not violate the second law of thermodynamics

- Order is maintained by coupling cellular processes that increase entropy with those that decrease entropy
- Energetically favorable exergonic reactions can be coupled with reactions that have a positive free energy change
 - Example: ATP \rightarrow ADP,
 - used to maintain or increase order in a system

Unit 3: Cellular Energetics

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

- Describe the processes that allow photosynthesis organisms to capture and store energy.
- Explain how cells capture energy from light and transfer it to chemical energy

The formation of the proton gradient is a separate process, but it is linked to the synthesis of ATP via ATP synthase

The Calvin cycle

- Occurs in the stroma of the chloroplast
- Produces carbohydrates from CO₂
- Powered by ATP and NADPH produced during lightdependent reactions

The Calvin cycle

You don't need to memorize of the steps or the molecules in the Calvin cycle (with the exception of ATP synthase)

Unit 3: Cellular Energetics

Main Idea: Living things are constantly exchanging matter and energy with the environment

<u>Be able to:</u>

- Describe the processes that allow organisms to use energy stored in macromolecules.
- Explain how cells obtain energy from macromolecules and use it to power cellular functions.

Cellular Respiration

- series of coordinated reactions
- enzyme-catalyzed
- harvests free energy from simple carbohydrates

Glycolysis

- Glucose (6C) is broken into 2 pyruvate (3C)
 - energy released to form 4 ATP (net 2)
 - $NAD^+ \rightarrow NADH$
 - Occurs in cytosol of cell

Anaerobic Respiration

- In the absence of oxygen
- regenerate NAD⁺
- occurs in cytosol

Aerobic respiration

- In the presence of oxygen
- animals, plants, fungi, protozoa, bacteria
- Occurs in mitochondria

Krebs (citric acid) cycle

- CO₂ is released
- 2 ATP are synthesized
- substrate level phosphorylation
 Electrons are extracted by NADH and FADH₂, carried to the electron transport chain

Electron transport chain

 Source of most ATP in aerobic cellular respiration

Electron Transport Chain in mitochondria

- Electrons are delivered by NADH and FADH₂ to the ETC
 - Energy from the electrons are used to move protons
 - electrochemical gradient

- Oxygen is the final electron acceptor
- Water is produced

Unit 3 Quizizz Game Codes

3.1: 0898 6211 3.2: 5197 7827 3.3: 1291 8371 3.4: 2235 5555 3.5: 6377 4307 3.6: 5014 2819 3.7: 5158 4611 Compiled: 5974 0971

Main Idea: Cells communicate by generating, transmitting, receiving, and responding to chemical signals.

<u>Be able to</u>:

- Describe the ways that cells can communicate with each other
- Explain how cells communicate over short and long distances
- Describe signal transduction pathways and how they produce a cellular response

Cells communicate over short distances by using local regulators that target cells in the vicinity of the emitting cell

Called paracrine signals Example: Neurotransmitters

Signals released by one cell type can travel long distances to target cells of another cell type

called Endocrine signals

Example:Insulin and other endocrine system signals

Signaling begins with a ligand

Chemical messengers

- peptides
- small chemicals
- \circ proteins

Specific to the receptor

Receptor protein

- 1.Signal molecules binds to the receptor protein
- 2. protein changes shape

conformation change

3. Initiates transduction of the signal

The process of signal transduction

Converts signal to cellular

response

- signal cascade
- relays signal from receptor to cell target
- often amplifying signal

Main Idea: Organisms use environmental cues to coordinate reactions used for growth, reproduction, and homeostasis

<u>Be able to</u>:
 Describe positive and negative feedback and explain how negative feedback helps maintain homeostasis

- Explain how positive feedback affects homeostasis.
- Describe the role of the environment in eliciting a cellular response

Negative feedback

- The response reduces the effect of the stimulus
- Used to maintain homeostasis

Negative feedback examples

Sweat and temperature

- Exercise
 - internal temperature increases
- Sweat
 - Internal temperature returns to normal

Positive feedback

- Response magnifies effect of stimulus
 Example: Ripening fruit
 - Fruit releases ethylene gas as they ripen
 - ethylene gas signals fruit ripening

Main Idea: Organisms pass genetic information on to the next generation

<u>Be able to:</u>

- Describe the events that occur in the cell cycle.
- Explain how mitosis results in two genetically identical cells

Major stages of a eukaryotic cell's life cycle.

How eukaryotic cells accomplish the processes of growth, repair, and reproduction.

Interphase: non-dividing life (most of the cell cycle). $G_1 \rightarrow S \rightarrow G_2$

M-phase: cell division.

Mitosis

Produces two genetically identical "daughter" cells.

Chromosomes duplicated in S phase condense, align, and separate.

Main Idea: Organisms pass genetic information on to the next generation

<u>Be able to:</u>

- Describe how checkpoints regulate the cell cycle.
- Explain how disruptions to these checkpoints can affect the cell and/or organism.

Control of Cell Division

- Mitosis is under strict cellular control. Cells must pass through a series of "checkpoints" to be allowed to divide.
- If internal conditions are not appropriate, cell division will normally be prevented.
- Ex. Mitosis Promotion Factor

Unit 4 Quizizz Game Codes

4.1:0184 5875 4.2: 4378 8915 4.3:64760435 4.4:08530547 4.5: 6685 7587 4.6: 0433 6243 4.7: 5466 7891 Compiled: 2833 2843

Join our AP community! @marcolearning f @ J V V @apbiopenguins @ J V V