

Surface Area and Volume

$$
S A=2 \pi r h+2 \pi r^{2}
$$

Identification of Variables

Surface Area and Volume

$$
S A=2 \pi r \mathrm{~h}+2 \pi r^{2}
$$

Cylinder
$r=$ radius
$h=h e i g h t$

Math Monday \#5

SA/V: Cylinder

Determine the surface area-to-volume ratio for a cylinder with radius of 2 cm and height of 3 cm

$$
\begin{array}{lll}
\mathrm{r}=2 \mathrm{~cm} \\
\mathrm{~h}=3 \mathrm{~cm} & S A=2 \pi(2)(3)+2 \pi 2^{2} & V=\pi 2^{2} 3 \\
& S A=2 \pi 6+2 \pi 4 & V=\pi(4) 3 \\
& S A=12 \pi+8 \pi=20 \pi & V=12 \pi
\end{array}
$$

Surface Area and Volume

$$
S A=2 \pi r h+2 \pi r^{2}
$$

$$
\frac{S A}{V}=\frac{20 \pi}{12 \pi}=\frac{5}{3}
$$

$$
V=\pi r^{2} h
$$

Example Problem

SA/V: Cylinder

Determine the surface area-to-volume ratio for a cylinder with radius of 3 cm and height of 2 cm

$$
\begin{array}{lll}
\mathrm{r}=3 \mathrm{~cm} \\
\mathrm{~h}=2 \mathrm{~cm} & S A=2 \pi(3)(2)+2 \pi 3^{2} & V=\pi 3^{2} 2 \\
& S A=2 \pi 6+2 \pi 9 & V=\pi(9) 2 \\
& S A=12 \pi+18 \pi=30 \pi & V=18 \pi
\end{array}
$$

Surface Area and Volume

$$
S A=2 \pi r h+2 \pi r^{2}
$$

$$
\frac{S A}{V}=\frac{30 \pi_{i}}{18 \pi}=\frac{5}{3}
$$

$V=\pi r^{2} h$

Which cell is more efficient?

