

Surface Area and Volume

Identification of Variables

$$
r=\text { radius }
$$

Math Monday \#5

SA/V: Sphere

Determine the surface area-to-volume ratio for a sphere with radius 2 cm .

$$
\mathrm{r}=2 \mathrm{~cm}
$$

$$
\begin{array}{ll}
S A=4 \pi 2^{2} & V=\frac{4}{3} \pi 2^{3} \\
S A=4 \pi 4 & V=\frac{4}{3} \pi 8
\end{array}
$$

Surface Area and Volume

$$
S A=4 \pi r^{2}
$$

Sphere

$$
S A=16 \pi \quad V=\frac{32}{3} \pi
$$

$$
\frac{S A}{V}=\frac{16 \pi}{\frac{32}{3} \pi}=\frac{15 \pi}{1} \times \frac{3}{32 \pi}=\frac{3}{2}
$$

Example Problem

SA/V: Sphere

What is the SA/V for this cell? Round your answer to the nearest hundredth?

$$
\mathrm{r}=5 \mathrm{~cm}
$$

$$
\begin{array}{ll}
S A=4 \pi 5^{2} & V=\frac{4}{3} \pi 5^{3} \\
S A=4 \pi 25 & V=\frac{4}{3} \pi 125
\end{array}
$$

Surface Area and Volume

$$
S A=4 \pi r^{2}
$$

Sphere

$$
\begin{gathered}
S A=100 \pi \quad V=\frac{500}{3} \pi \\
\frac{S A}{V}=\frac{100 \pi}{\frac{500}{3} \pi}=\frac{100 \pi}{1} \times \frac{3}{\frac{505 \pi}{5}}=\frac{3}{5}=0.60
\end{gathered}
$$

Which cell is more efficient?

