AD BIO INSTA-REVIEW

TOPIC

Cell Size

ENE-1.B. 1

Surface area-to-volume ratios affect the ability of a biological system to obtain necessary resources, eliminate waste products, acquire or dissipate thermal energy, and otherwise exchange chemicals and energy with the environment.

AD BIO INSTA-REVIEW

TOPIC

Cell Size

Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$
Volume of a Cube: $V=s^{3}$
Volume of a Rectangular Solid: $V=l w h$
Volume of a Cylinder: $V=\pi r^{2} h$

Surface Area of a Sphere: $S A=4 \pi r^{2}$
Surface Area of a Cube: $S A=6 s^{2}$
Surface Area of a Rectangular Solid:
$S A=2 l h+2 l w+2 w h$
Surface Area of a Cylinder: $S A=2 \pi r h+2 \pi r^{2}$
$r=$ radius
$l=$ length
$h=$ height
$\mathrm{w}=$ width
$s=$ length of one side of a cube

Cell Size

ENE-1.B. 2

The surface area of the plasma membrane must be large enough to adequately exchange materials-
a. These limitations can restrict cell size and shape. Smaller cells typically have a higher surface area-to-volume ratio and more efficient exchange of materials with the environment.
b. As cells increase in volume, the relative surface area decreases and the demand for internal resources increases.

Cell Size

ENE-1.B. 2

The surface area of the plasma membrane must be large enough to adequately exchange materials-
c. More complex cellular structures (e.g., membrane folds) are necessary to adequately exchange materials with the environment. d. As organisms increase in size, their surface area-to-volume ratio decreases, affecting properties like rate of heat exchange with the environment.

Cell Size

ENE-1.C. 1

Organisms have evolved highly efficient strategies to obtain nutrients and eliminate wastes. Cells and organisms use specialized exchange surfaces to obtain and release molecules from or into the surrounding environment.

AP BIO INSTA-REVIEW

TOPIC

2.3

Which of the following cells is most efficient?
Note: $S A=$ surface area $V=$ volume

$$
\begin{aligned}
& \text { A. SA: } 4 \mathrm{v}: 1 \\
& \text { B. SA: } 3 \mathrm{~V}: 2 \\
& \text { C. SA: } 2 \mathrm{~V}: 3 \\
& \text { D. SA: } 1 \quad \mathrm{~V}: 4
\end{aligned}
$$

AD BIO INSTA-REVIEW

Which of the following cells is most efficient?
Note: $S A=$ surface area $\quad V=$ volume

$$
\text { A. SA: } 4 \text { V: } 1
$$

The most efficient cell is the cell with the highest surface area to volume ratio.
A. $4 / 1=4$
B. $3 / 2=1.5$
C. $2 / 3=0.67$
D. $1 / 4=0.25$

AP BIO INSTA-REVIEW

TOPIC

2.3

As surface area is squared, volume is...

A. Halved
 B. Doubled
 C. Squared
 D. Cubed

AD BIO INSTA-REVIEW

As surface area is squared, volume is...

D. Cubed

Let's take a cube for example.

The side length x side height equals the side squared $\times 6$ sides gives the surface area of the cube.

The side length x side height x side width equals the side cubed gives you the volume of the cube.
@APBIOPENGUINS

AP BIO INSTA-REVIEW

TOPIC

As the organism grows, how does it overcome the SA:V requirement?
@APBIOPENGUINS

AD BIO INSTA-REVIEW

As the organism grows,
how does it overcome the

SA:V requirement?

Increases the number of cells. As the organism is bigger, it has more cells to ensure that each cell still has a large surface area to volume ratio. In addition, the organism builds "compartments" (aka tissues/organs with specific jobs)

AD BIO INSTA-REVIEW

TOPIC

2.3

The small intestines is responsible for nutrient absorption in the digestive system. There are folds called microvilli in this organ. What is the function of the microvilli in the small intestines?

AD BIO INSTA-REVIEW

The small intestines is responsible for nutrient
absorption in the digestive system. There are folds called microvilli in this organ. What is the function of the microvilli in the small intestines?

Increases the surface area which provides more space for an increased efficiency absorbing nutrients.

AP BIO INSTA-REVIEW

TOPIC

What is the surface area of a sphere with a radius of 3?

$$
\begin{aligned}
& \text { A. } 4 \mathrm{pi} \\
& \text { B. } 16 \mathrm{pi} \\
& \text { C. } 36 \mathrm{pi} \\
& \text { D. } 64 \mathrm{pi}
\end{aligned}
$$

AD BIO INSTA-REVIEW
2.3

What is the surface area of a sphere with a radius
of 3?
C. 36 pi

The equation for surface area is

$$
\begin{aligned}
& \text { 4pi(r)2 } \\
& \text { So, 4pi(3)2 } \\
& =4 \mathrm{pi}(9) \\
& =36 \mathrm{pi}
\end{aligned}
$$

AP BIO INSTA-REVIEW

TOPIC

What is the volume of a sphere with a radius of 3?

$$
\begin{gathered}
\text { A. }(4 / 3) \mathrm{pi} \\
\text { B. }(32 / 3) \mathrm{pi} \\
\text { C. }(108 / 3) \text { pi or } 36 \mathrm{pi} \\
\text { D. }(256 / 3) \mathrm{pi}
\end{gathered}
$$

AD BIO INSTA-REVIEW

TOPIC

What is the volume of a sphere with a radius of 3?

C. $(108 / 3) \mathrm{pi}$

The equation for volume is $(4 / 3) p i(r)^{3}$.

$$
\begin{aligned}
& \text { So, }(4 / 3) \mathrm{pi}(3)^{3} \\
& =(4 / 3) \mathrm{pi}(27) \\
& =(108 / 3) \mathrm{pi}
\end{aligned}
$$

AP BIO INSTA-REVIEW

TOPIC

What is the surface area of a cube with a side length of 2?

$$
\begin{aligned}
& \text { A. } 6 \\
& \text { B. } 24 \\
& \text { C. } 54 \\
& \text { D. } 96
\end{aligned}
$$

AD BIO INSTA-REVIEW

What is the surface area of a cube with a side length of 2?

$$
\text { B. } 24
$$

The equation for surface area is

$$
\begin{gathered}
6 s^{2} \\
\text { So, } b(2)^{2} \\
=6(4) \\
=24
\end{gathered}
$$

AP BIO INSTA-REVIEW

TOPIC

What is the volume of a cube with a side length of 2?

$$
\begin{aligned}
& \text { A. } 1 \\
& \text { B. } 8 \\
& \text { C. } 27 \\
& \text { 0. } 64
\end{aligned}
$$

AP BIO INSTA-REVIEW
 TOPIC

What is the volume of a cube with a side length of 2?

$$
\text { B. } 8
$$

The equation for surface area is

$$
\begin{gathered}
s^{3} \\
S_{0}, 2^{3}=8
\end{gathered}
$$

AP BIO INSTA-REVIEW

Why is the inner membrane of the mitochondria highly folded?
A. Increase volume of mitochondria B. Increase in surface area for oxidative phosphorylation
C. Decrease volume of mitochondria
D. Decrease in surface area for oxidative phosphorylation

AD BIO INSTA-REVIEW

Why is the inner membrane of the mitochondria highly folded?

AP BIO INSTA-REVIEW

TOPIC
 2.3

How does the increase in surface area affect the volume?
@APBIOPENGUINS

How does the increase in surface area affect the volume?

As surface area increases, the volume increases. The surface area increases by factor squared. The volume increased by factor cubed.

AP BIO INSTA-REVIEW

TOPIC

2.3

How do microvilli increase diffusion?
@APBIOPENGUINS

AD BIO INSTA-REVIEW

diffusion?

Microvilli are extensions of the plasma membrane. These are traditionally found on cells like those in the small intestines which are responsible for absorption of nutrients. They are able to increase diffusion by increasing the surface area to volume ratios of these cells.

AP BIO INSTA-REVIEW

TOPIC

Which cell is more efficient?

A. Sphere
 B. Cube

Note:

Sphere
SA: $\mathbf{3 6} \mathbf{~ p i}$ SA: $\mathbf{2 4}$
v: (108/3)pi v: 8
@APBIOPENGUINS

AD BIO INSTA-REVIEW

TOPIC

2.3

Which cell is more efficient?

B. Cube

The sphere has a SA/V ratio of 1 and the cube has a SA/V ratio

$$
\text { of } 3 .
$$

The larger SA:V ratio is more efficient

