

AP Biology Insta-Review Unit 2: Cell Structure and Function

Tiffany Jones @apbiopenguins

AP Biology

Today's Plan

Special Thank You to Mrs. McClinton

(Chat Q&A)

Today's Plan: Cellular Organelles Surface Area : Volume Membrane Transport **Practice Questions** Unit 2 Q&A

Nucleus

Structure:

- Double membrane (nuclear envelope) with pores Functions:
- Stores genetic information (DNA)
- Synthesis of RNA
- Ribosome subunit assembly

Rough ER

- Structure:
- Membrane studded with ribosomes attached to nuclear envelope Functions:
- Site of membrane-bound protein and secreted protein synthesis
- Cell compartmentalization
- Mechanical support
- Role in intracellular transport

Smooth ER

Structure:

- Folded, tubelike structure (cisternae)
- Functions:
- Detoxification
- Calcium Storage
- Lipid synthesis

Cellular Organelles

Structure:

 Membrane-bound structure composed on flattened sacs (cisternae)

Functions:

- Folding and chemical modification of synthesized proteins
- Packaging protein traffic

Golgi Complex

Structure:

- Composed of rRNA and protein
- Large & small subunits
- Types: bound or free (cytoplasmic)

Functions:

• Protein synthesis

Ribosomes

Mitochondria

Structure:

Double membrane
(outer: smooth; inner: highly folded)

Functions:

- Site of oxidative phosphorylation (cristae/inner membrane)
- Site of Krebs Cycle (matrix)

Cellular Organelles

Structure:

• Double outer membrane (thylakoid sac stacked: grana and fluid: stroma)

Functions:

- Site of photosynthesis
- Thylakoid: Light Reactions
- Stroma: Calvin-Benson Cycle

Chloroplast

Mitochondria

Structure:

Double membrane
(outer: smooth; inner: highly folded)

Functions:

- Site of oxidative phosphorylation (cristae/inner membrane)
- Site of Krebs Cycle (matrix)

Lysosome

Structure:

membrane-enclosed sacs that contain hydrolytic enzymes

Functions:

 Intracellular digestion (recycle cell organic materials & programmed cell death: apoptosis)

Cellular Organelles

Structure:

membrane-bound sac

Functions:

- storage and release of macromolecules and cellular waste products
- Central: water retention turgor pressure
- Contractile: osmoregulation (protist)
- Food: phagocytosis, fuse with lysosome Vacuole

Structure:

• Double outer membrane (thylakoid sac stacked: grana and fluid: stroma)

Functions:

- Site of photosynthesis
- Thylakoid: Light Reactions
- Stroma: Calvin-Benson Cycle

Chloroplast

Smaller cells typically have a higher surface area-to-volume ratio and more efficient exchange of materials with the environment.

Simple Diffusion

- Passive Transport, No NRG
- Down concentration gradient
- Small, Nonpolar
- No transport protein needed
- Examples: CO_2 , O_2 , N_2 , steroids
- Small amount of H₂O leak through membrane

Facilitated Diffusion

- Passive Transport, No NRG
- Down concentration gradient
- Small Molecules
- Requires transport protein Channel vs. Carrier protein
- Example: water, Na⁺, K⁺, Ca⁺

Active Transport

- Requires input of NRG
- Against concentration gradient
- Requires transport protein (carrier protein)
- Example: Na⁺, K⁺, Ca⁺, H⁺

Membrane Transport

Plasma Membrane

Composed of:

- Phospholipids
- Membrane Proteins
- Glycolipids/Glycoproteins
- Cholesterol

Simple Diffusion

- Passive Transport, No NRG
- Down concentration gradient
- Small, Nonpolar
- No transport protein needed
- Examples: CO_2 , O_2 , N_2 , steroids
- Small amount of H₂O leak through membrane

Facilitated Diffusion

- Passive Transport, No NRG
- Down concentration gradient
- Small Molecules
- Requires transport protein Channel vs. Carrier protein
- Example: water, Na⁺, K⁺, Ca⁺

Active Transport

- Requires input of NRG
- Against concentration gradient
- Requires transport protein (carrier protein)
- Example: Na⁺, K⁺, Ca⁺, H⁺

Membrane Transport

Endocytosis

- Import of materials
- Phagocytosis: Cellular Eating
- Pinocytosis: Cellular Drinking
- Receptor-Mediated: Endocytosis

Exocytosis

Export of materials Rough ER (synthesize) \rightarrow Golgi complex (package/modification) \rightarrow Plasma Membrane

Hypertonic Solution

- HIGH solute concentration
- LOW free water concentration
- GAINS water from hypotonic solution

Isotonic Solution

- EQUAL solute concentration (as other solution)
- EQUAL free water concentration (as other solution)
- Equal water movement into and out of solution

Hypotonic Solution

- LOW solute concentration
- HIGH free water concentration
- LOSES water to hypertonic solution

DILUTE SOLUTION (HYPOTONIC)

Osmosis

Multiple Choice Practice

A common laboratory investigation involves putting a solution of starch and glucose into a dialysis bag and suspending the bag in a beaker of water, as shown in the figure below. The investigation is aimed at understanding how molecular size affects movement through a membrane. Which of the following best represents the amount of starch, water, and glucose in the dialysis bag over the course of the investigation?

 Water
 Starch
 Glucose

A common laboratory investigation involves putting a solution of starch and glucose into a dialysis bag and suspending the bag in a beaker of water, as shown in the figure below. The investigation is aimed at understanding how molecular size affects movement through a membrane. Which of the following best represents the amount of starch, water, and glucose in the dialysis bag over the course of the investigation?

FRQ Practice (2018 #6)

Free Response Practice:

Cystic fibrosis is a genetic condition that is associated with defects in the CFTR protein. The CFTR protein is a gated ion channel that requires ATP binding in order to allow chloride ions (Cl-) to diffuse across the membrane.

(b) Identify the most likely cellular location of the ribosomes that synthesize CFTR protein.

Identification (1 point)

(Rough) Endoplasmic Reticulum/ER

(c) **Identify** the most likely cellular location of a mutant CFTR protein that has an amino acid substitution in the ATP-binding site.

Identification (1 point)

In the (cellular/plasma) membrane

Follow us on your favorite social media channels!

Nucleus

Structure:

•

Double membrane (nuclear Structure:

Folded, tubelike structure

(cisternae)

Functions:

Site of membrane-bound protein

and secreted protein synthesis

Smooth ER

Structure:

•

Membrane studded with ribosomes

Rough ER

attached to nuclear envelope

Functions:

•

- envelope) with pores
- Functions:
- Stores genetic information (DNA) Synthesis of RNA •
 - Ribosome subunit assembly
- Cell compartmentalization

Mechanical support

Calcium Storage Lipid synthesis

•

Detoxification

Role in intracellular transport

Drganelles Cellular

Structure:

- Membrane-bound structure composed on flattened sacs (cisternae) .
 - Folding and chemical modification of Functions: .

Types: bound or free (cytoplasmic)

Composed of rRNA and protein

Structure:

•

Large & small subunits

Packaging protein traffic synthesized proteins

Golgi Complex

Ribosomes

Protein synthesis

.

Functions:

Lysosome

Mitochondria

- membrane-enclosed sacs that contain Structure: .
- hydrolytic enzymes Functions:

(outer: smooth; inner: highly folded)

Double membrane

Structure:

Site of oxidative phosphorylation

Functions:

Site of Krebs Cycle (matrix)

)a

(cristae/inner membrane)

Intracellular digestion (recycle cell organic materials & programmed cell death: apoptosis) •

Cellular Organelles

membrane-bound sac Structure:

- Functions:
- storage and release of macromolecules and cellular waste products
 - Central: water retention turgor pressure •
 - Contractile: osmoregulation (protist) •
 - Food: phagocytosis, fuse with lysosome Vacuole

Double outer membrane (thylakoid sac stacked: grana and fluid: stroma) Structure: •

- Functions:
 - Site of photosynthesis •
- Thylakoid: Light Reactions
- Stroma: Calvin-Benson Cycle

8)

Chloroplast

Smaller cells typically have a higher surface area-to-volume ratio and

more efficient exchange of materials with the environment.

Plasma Membrane

- Composed of:
 - Phospholipids •
- Membrane Proteins Glycolipids/Glycoproteins Cholesterol •

Simple Diffusion

Down concentration gradient Passive Transport, No NRG

•

- Small, Nonpolar
- No transport protein needed .
- Examples: CO₂, O₂, N₂, steroids Small amount of H₂O leak through membrane

Facilitated Diffusion

- Passive Transport, No NRG . .
- Down concentration gradient
 - Small Molecules
- Requires transport protein Channel vs. Carrier protein Example: water, Na⁺, K⁺, Ca⁺

Active Transport Requires input of NRG •

- Against concentration gradient
- Requires transport protein
 - (carrier protein)
- Example: Na⁺, K⁺, Ca⁺, H⁺

Membrane Transport

Endocytosis

Bulk

- Phagocytosis: Cellular Eating Import of materials •
- Pinocytosis: Cellular Drinking Receptor-Mediated: Endocytosis . .

Exocytosis

Export of materials Rough ER (synthesize) → Golgi complex (package/modification) → Plasma Membrane •

POTENTIAL

HIGH TO LOW WATER POTENTIAL

WATER MOVES BY OSMOSIS FROM

Hypotonic Solution LOW solute concentration . . Isotonic Solution

EQUAL free water concentration EQUAL solute concentration (as other solution)

•

LOW free water concentration

HIGH solute concentration

٠ . GAINS water from hypotonic

•

solution

Hypertonic Solution

HIGH free water concentration

LOSES water to hypertonic

•

solution

- (as other solution)
- Equal water movement into and out of solution

3

SMOS