

In fruit flies, the phenotype for eye color is determined by a certain locus. *E* indicates the dominant allele and *e* indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type	Wild-type	White-eyed	White-eyed	Brown-eyed
	Male	Female	Male	Female	Female
F1	0	45	55	0	1

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2 23 31 22 24 0

In fruit flies, the phenotype for eye color is determined by a certain locus. **E** indicates the dominant allele and **e** indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type	Wild-type	White-eyed	White-eyed	Brown-eyed
	Male	Female	Male	Female	Female
F1	0	45	55	0	1

(a) <u>Determine</u> the genotypes of the original parents (P generation) and <u>explain</u> your reasoning. You may use Punnett squares to enhance your description, but the results from the Punnett squares must be discussed in your answer.

½ Wild Type Female

1/2 White Eye Male

	Λ'	Ĭ
χe	XE Xe	XeY
Χe	XE Xe	$X^e Y$

VF

1/4 Wild Type Female1/4 Wild Type Male1/4 White Eye Female1/4 White Eye Male

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2

23

31

22

24

0

In fruit flies, the phenotype for eye color is determined by a certain locus. **E** indicates the dominant allele and **e** indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type	Wild-type	White-eyed	White-eyed	Brown-eyed
	Male	Female	Male	Female	Female
F1	0	45	55	0	1

(a) <u>Determine</u> the genotypes of the original parents (P generation) and <u>explain</u> your reasoning. You may use Punnett squares to enhance your description, but the results from the Punnett squares must be discussed in your answer.

(a) Maximum 4 points

- 1 pt Genotypes of the parents (words or symbols) X^EY (or X⁺Y) and X^eX^e
- 1 pt Discuss/show how these resulted in this F1 (may be annotated Punnett)
- 1 pt Explain that it is a sex-linked (X-linked) gene (not just the word)
- 1 pt How you know which type is dominant
- 1 pt F2 results (may be annotated Punnett square)

(a) <u>Determine</u> the genotypes of the original parents (P generation) and <u>explain</u> your reasoning. You may use Punnett squares to enhance your description, but the results from the Punnett squares must be discussed in your answer.

T - ma name of man and into anticompany of man and and and and and and and and and a
a) The genotypes of the original parents were
Xº Xº for the female and XºY for the male.
The trait is sex-linked only carried on the X
chromosome. The female is homozygous recessive
for white eyes while He make has a single
dominant gene. The validity of Hose gentypes can be seen with a prinnett square.
can be seen with a bunnett square.
X Z Y
Xe XEXE XeY
X° XEX° XEY
In the F, generation half of the offgoring are
formales hetero Exerces for wild-time eyes while
the other half are males with white -eye goes.

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2

23

31

22

24

0

Phenotype	Observed (0)	Expected (E)	0-E	$(O - E)^2$	$(O - E)^2 / E$

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2

23

31

22

24

0

Phenotype	Observed (0)	Expected (E)	0-E	$(O - E)^2$	$(O - E)^2 / E$
Wild-Type Male	23				
Wild-Type Female	31				
White-Eyed Male	22				
White-Eyed Female	24				
Total	100				

2003 #f1

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

1:1:1:1

F2

23

31

22

24

0

Phenotype	Observed (0)	Expected (E)	0 – E	$(O - E)^2$	$(O - E)^2 / E$
Wild-Type Male	23	25			
Wild-Type Female	31	25			
White-Eyed Male	22	25			
White-Eyed Female	24	25			
Total	100	100			

2003 #A

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

1:1:1:1

F2

23

31

22

24

0

Phenotype	Observed (0)	Expected (E)	0-E	$(O - E)^2$	$(O - E)^2 / E$
Wild-Type Male	23	25	-2		
Wild-Type Female	31	25	6		
White-Eyed Male	22	25	-3		
White-Eyed Female	24	25	- 1		
Total	100	100			

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

1:1:1:1

F2

23

31

22

24

0

Phenotype	Observed (0)	Expected (E)	0-E	$(O - E)^2$	$(O - E)^2 / E$
Wild-Type Male	23	25	-2	4	
Wild-Type Female	31	25	6	36	
White-Eyed Male	22	25	-3	9	
White-Eyed Female	24	25	- 1	1	
Total	100	100			

2003 #A

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2

23

31

24

(b) Use a Chi-squared test on the F2 generation data to analyze your prediction of the parental genotypes. Show all your work and explain the importance of your final answer.

4	4/25
36	36/25
9	9/25
1	1/25
	50/25 = 2.0
	-

Critical Values of the Chi-Squared Distribution

Probability (p)		Degr	Degrees of Freedom (df)		
	1	2	3	4	5
0.05	3.84	5.99	7.82	9.49	11.1

2.0 < 7.82; fail to reject the null hypothesis

In fruit flies, the phenotype for eye color is determined by a certain locus. *E* indicates the dominant allele and *e* indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type Male	Wild-type Female	White-eyed Male	White-eyed Female	Brown-eyed Female
F1	0	45	55	0	1

(b) Use a Chi-squared test on the F2 generation data to analyze your prediction of the parental genotypes. Show all your work and explain the importance of your final answer.

(b) Maximum 4 points

- 1 pt Correct F2 hypothesis (1:1:1:1; or 25/genotype)
- 1 pt Show work (components): o e o-e $(o-e)^2$ (o-e)²/e (or correct numbers (4/25 + 36/25 + 1/25 + 9/25 = 50/25 = 2; or at least the last term)
- 1 pt Sum: correct chi-square result ~ 2.0 or 1.85
- 1 pt degrees of freedom = 3 (critical value is 7.82)
- 1 pt correct interpretation of chi-square in terms of p
 - p = probability that the difference between the observed and the expected value is due to chance alone.
 - This p value shows we accept our hypothesis.
 - The null hypothesis is supported in this case.
 - (alternative: 2 X² tests of white vs. red males and white vs. red females)

b) The expected genotions for generation & are
shown in a Punnett square:
Xe Y
X = X = X = Y
Xe Xe xe Xey
Wild-type famales white-eyed females (xexe) wild-
Type males (XEV) and white-yed males (XEY) should
all show up in equal proportions (1:1:(:1). Thus,
it is expected that for the 100 individuals of
generation FZ, 25 individuals should show each
shenoture. The would be the expected count for
each form in the X test.
$\gamma^2 = (23-25)^2, (31-25)^2, (22-25)^2, (24-25)^2$
25 25 25

In fruit flies, the phenotype for eye color is determined by a certain locus. **E** indicates the dominant allele and **e** indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type Male	Wild-type Female	White-eyed Male	White-eyed Female	Brown-eyed Female
F1	0	45	55	0	1

(c) The brown-eyed female in the F1 generation resulted from a mutational change. <u>Explain</u> what a mutation is, and <u>discuss</u> two types of mutations that might have produced the brown-eyed female in the F1 generation.

(c) Maximum 4 points

1 pt Explain what a mutation is: (heritable) change in the DNA (code)

1-2 pts Discuss 2 types of mutations

May be: Point mutation, frameshift (deletion/duplication), insertion, transposition, break, inversion within gene, base substitution, nonsense/stop, missense)

May NOT be: chromosomal aberration, nondisjunction, silent/neutral, transcription or translation or processing error

1 pt Molecular or biochemical elaboration beyond the explanation required

(c) The brown-eyed female in the F1 generation resulted from a mutational change. <u>Explain</u> what a mutation is, and <u>discuss</u> two types of mutations that might have produced the brown-eyed female in the F1 generation.

(c) The brown-eyed female in the F1 generation resulted from a mutational change. <u>Explain</u> what a mutation is, and <u>discuss</u> two types of mutations that might have produced the brown-eyed female in the F1 generation.

