$$
\begin{aligned}
& \text { APP Bio } \\
& \text { ARR Fridays } \\
& 0
\end{aligned}
$$

FRQ Friday $w 18$

Polycystic kidney disease (PKD) is an inherited disease that causes water loss from the body and affects cell division in the kidneys. Because water movement across cell membranes is related to ion movement, scientists investigated the role of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase (also known as the sodium/potassium pump) in this disease. Ouabain, a steroid hormone, binds to the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase in plasma membranes. Individuals with PKD have a genetic mutation that results in an increased binding of ouabain to the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase. The scientists treated normal human kidney (NHK) cells and PKD cells with increasing concentrations of ouabain and measured the number of cells (Figure 1) and the activity of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase (Figure 2) after a period of time. The scientists hypothesized that a signal transduction pathway that includes the protein kinases MEK and ERK (Figure 3) may play a role in PKD symptoms.

FRQ Friday \#o18

FRQ Friday $\# 018$

(a) Describe the characteristics of the plasma membrane that prevent simple diffusion of Na^{+}and K^{+}across the membrane. Explain why ATP is required for the activity of the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase.

Accept one of the following:

- The interior of the plasma membrane is hydrophobic/nonpolar.
- The phospholipid tails are hydrophobic/nonpolar.
- The exterior of the plasma membrane is hydrophilic/polar.
- The phospholipid heads are hydrophilic/polar.
- The $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase pumps ions against their concentration gradients. This requires an input of (metabolic) energy.

Accept one of the following:

- The interior of the plasma membrane is hydrophobic/nonpolar.
- The phospholipid tails are hydrophobic/nonpolar.
- The exterior of the plasma membrane is hydrophilic/polar.
- The phospholipid heads are hydrophilic/polar.
- The $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase pumps ions against their concentration gradients. This requires an input of (metabolic) energy.

The plasma mentrone s composed of phospholipids, which have a hydrophilic head and inward facing hydrophobic fatty acid tails.
This plasma mentrae is senipormealle, meaning that only nonpdar, small substances can undergce simple diffusion through this monbrene. Since Na^{+}and K^{+}are ions. (Hey have on electric charge) they, must enter the cell thrash transport protons since cant diffuse through nenbrane. Because cells create a gradient of $k r$ ions with in the cell, ATP is required for the transport protean $\mathrm{Na}^{+} / \mathrm{K}^{+}$AtPosers Since the cell is bringing in mare K^{+}ions agonist their concentration gradient and pumping att Na^{+}ions against their concentration gradient. enegy in the form of ATP is necessary for thy protean to work.

FRQ Friday $w 18$

$2021+1$

(b) Identify a dependent variable in the experiment represented in Figure 1. Justify the use of normal human kidney (NHK) cells as a control in the experiments. Justify the use of a range of ouabain concentrations in the experiment represented in Figure 1.

- The number of cells

Accept one of the following:

- It allows the scientists to determine the effect of PKD on the cells' responses to (various concentrations of) ouabain.
- It allows the scientists to compare the responses of PKD cells and normal cells (to ouabain).

Accept one of the following:

- The scientists need to determine whether different concentrations have different effects on the cell numbers.
- The scientists did not know at which concentration of ouabain there would be an effect.

FRQ Friday 7018
(b) Identify a dependent variable in the experiment represented in Figure 1. Justify the use of normal human kidney (NHK) cells as a control in the experiments. Justify the use of a range of ouabain concentrations in the experiment represented in Figure 1.

Dependent variable is the number of resulting NHK and PKD cells follaung different cots of ouchooin. Nth cells serve as a model to compare the cellular changes caused by ouabain in PIDD cells, since the values collected would be insignifigent without a relavert comporisca. Using a range of ouabain concentrations allowed the researchers to absence the changes that cur in cells it f multiple candinons, since a very small mart of ouabain may have a very differ effect on kidney celts compared to a very high amount.

FRQ Friday \#18

(c) Based on the data shown in Figure 2, describe the relationship between the concentration of ouabain and the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity both in normal human kidney (NHK) cells AND in PKD cells. The scientists determined that $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity in PKD cells treated with 1 pM ouabain is 150 units of ATP hydrolyzed/sec. Calculate the expected $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity (units/sec) in PKD cells treated with $10^{6} \mathrm{pM}$ ouabain.

Accept one of the following:

- Increasing concentrations of ouabain result in decreasing ATPase activity (in both types of cells).
- There is an inverse relationship/negative correlation between the concentration of ouabain and the ATPase activity (in both types of cells).

$$
150 * 30 \%=45
$$

- 45 (Accept between 40 and 50)

FRQ Friday \# 18

(c) Based on the data shown in Figure 2, describe the relationship between the concentration of ouabain and the $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity both in normal human kidney (NHK) cells AND in PKD cells. The scientists determined that $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity in PKD cells treated with 1 pM ouabain is 150 units of ATP hydrolyzed/sec. Calculate the expected $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase activity (units/sec) in PKD cells treated with $10^{6} \mathrm{pM}$ ouabain.

Accept one of the following:

- Increasing concentrations of ouabain result in decreasing ATPase activity (in both types of cells).
- 45 (Accept between 40 and 50)
- There is an inverse relationship/negative correlation between the concentration of ouabain and the ATPase activity (in both types of cells).

In both hemal normal kidney cells and PKD cells, os concentration of ouabain increases past $10^{4} \mathrm{pM}$, a drastic decrease in $\mathrm{Na}^{-} / \mathrm{K}^{+}$ATPase occurs. So there is a negative relationship between ouabam and $\mathrm{No}^{+} / \mathrm{K}^{+}$Pase acturty. In PKID cells treated at with 10^{6} PM Ouabain, $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATDase achuty is 45 units of ATP hydrolyzed per second.

FRQ Friday \#\#18

(d) In a third experiment, the scientists added an inhibitor of phosphorylated MEK (pMEK) to the PKD cells exposed to $10^{4} \mathrm{pM}$ ouabain. Based on Figure 3, predict the change in the relative ratio of ERK to pERK in ouabain-treated PKD cells with the inhibitor compared with ouabain-treated PKD cells without the inhibitor. Provide reasoning to justify your prediction. Using the data in Figure 1 AND the signal transduction pathway represented in Figure 3, explain how the concentration of cyclin proteins may increase in PKD cells treated with $10^{4} \mathrm{pM}$ ouabain.

Accept one of the following:

- Option 1: The ratio of ERK to pERK will increase in the cells with the inhibitor.
- Option 2: The ratio of ERK to pERK will stay the same in the cells with the inhibitor.

Option 1:

- The amount of pERK will not increase as it does in cells without the inhibitor.
- The amount of ERK will not decrease as it does in cells without the inhibitor.
- The cell continues to synthesize ERK.
- Phosphorylated ERK is being dephosphorylated to ERK.

Option 2:

- No additional ERK is synthesized/pERK is not being dephosphorylated.

Accept one of the following:

- Option 1: The ratio of ERK to pERK will increase in the cells with the inhibitor.
- Option 2: The ratio of ERK to pERK will stay the same in the cells with the inhibitor.

Option 1:

- The amount of pERK will not increase as it does in cells without the inhibitor.
- The amount of ERK will not decrease as it does in cells without the inhibitor.
- The cell continues to synthesize ERK.
- Phosphorylated ERK is being dephosphorylated to ERK.

Option 2:

- No additional ERK is synthesized/pERK is not being dephosphorylated.

The relate rato of ERK to PERU will inderease in cells treated with the inhibiter compared to cells not treated with the inhibitor. Since PMEL signals the transfer of ERK to PERK, if this PE MEh is inhibited, it want allow for the phosphorylation of ERK to PERK and the ament of ERK will increase relative to PERL, cawing on increase in ratio.

FRQ Friday \#18

(d) In a third experiment, the scientists added an inhibitor of phosphorylated MEK (pMEK) to the PKD cells exposed to $10^{4} \mathrm{pM}$ ouabain. Based on Figure 3, predict the change in the relative ratio of ERK to pERK in ouabain-treated PKD cells with the inhibitor compared with ouabain-treated PKD cells without the inhibitor. Provide reasoning to justify your prediction. Using the data in Figure 1 AND the signal transduction pathway represented in Figure 3, explain how the concentration of cyclin proteins may increase in PKD cells treated with $10^{4} \mathrm{pM}$ ouabain.

- The cell number increases to a maximum at $10^{4} \mathrm{pM}$ ouabain. The signaling pathway stimulates transcription of genes involved in cell division. The target genes likely include those for cyclins because cyclins regulate the cell cycle.

FRQ Friday 018
(d) In a third experiment, the scientists added an inhibitor of phosphorylated MEK (pMEK) to the PKD cells exposed to $10^{4} \mathrm{pM}$ ouabain. Based on Figure 3, predict the change in the relative ratio of ERK to pERK in ouabain-treated PKD cells with the inhibitor compared with ouabain-treated PKD cells without the inhibitor. Provide reasoning to justify your prediction. Using the data in Figure 1 AND the signal transduction pathway represented in Figure 3, explain how the concentration of cyclin proteins may increase in PKD cells treated with $10^{4} \mathrm{pM}$ ouabain.

- The cell number increases to a maximum at $10^{4} \mathrm{pM}$ ouabain. The signaling pathway stimulates transcription of genes involved in cell division. The target genes likely include those for cycling because cycling regulate the cell cycle.

Oucton is a signding molecule that causes the trorscripton of hither target genres in cells. Since PKD cells have increased binding of cuabain, and cells in a cacentraten of 10^{4} ouabain have signitigathty, higher levels of cells; it can be inferred that ouabin increases tronsesption of cycling gores, which promote cell grautht duisan, as sham in fugue 1 .

