

Standard Deviation

Math Monday \#1

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: $104 \mathrm{~g}, 82 \mathrm{~g}, 121 \mathrm{~g}, 96 \mathrm{~g}, 108 \mathrm{~g}$, 73 g . What is the standard deviation of the tomato masses after treatment?
$n=6$

$$
s=\sqrt{\frac{\sum\left(x_{i}-97.3\right)^{2}}{6-1}}
$$

Math Monday \#1
 $s=\sqrt{\frac{\sum\left(x_{i}-97.3\right)^{2}}{6-1}}$

so
Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: $104 \mathrm{~g}, 82 \mathrm{~g}, 121 \mathrm{~g}, 96 \mathrm{~g}, 108 \mathrm{~g}$, 73 g . What is the standard deviation of the tomato masses after treatment?

$$
\mathrm{n}=6
$$

$$
\begin{gathered}
s=\sqrt{\frac{(104-97.3)^{2}+(82-97.3)^{2}+(121-97.3)^{2}+(96-97.3)^{2}+(108-97.3)^{2}+(73-97.3)^{2}}{5}} \\
s=\sqrt{\frac{(6.7)^{2}+(-15.3)^{2}+(23.7)^{2}+(-1.3)^{2}+(10.7)^{2}+(-24.3)^{2}}{5}} \\
s=\sqrt{\frac{44.89+234.09+561.69+1.69+114.49+590.49}{5}} \\
s=\sqrt{\frac{1547.34}{5}} \quad s=\sqrt{309.468} \quad s=17.59
\end{gathered}
$$

TI Tricks

Standard Deviation

Button: "STAT"
Select Edit \rightarrow 1:Edit Button: "ENTER"
Under L1, enter the values
Quit back to main screen by: Button "2nd" then "MODE"
Button: "STAT"
Select Calc \rightarrow 1: 1-Var Stats
Button: "ENTER"
Button: "ENTER"

The standard deviation is the Sx

Example Problem

Initial mass of pumpkin cores was measured in grams. What is the standard deviation of the initial mass for the pumpkin cores? Round to the nearest hundredth.

$$
29.15,28.45,30.92,29.25,32.09,31.67
$$

Standard Deviation

Example Problem

$$
\mathrm{n}=6 \quad s=\sqrt{\frac{\sum\left(x_{i}-30.26\right)^{2}}{6-1}}
$$

Initial mass of pumpkin cores was measured in grams. What is the standard deviation of the initial mass for the pumpkin cores? Round to the nearest hundredth.
$29.15,28.45,30.92,29.25,32.09,31.67$

$$
\begin{gathered}
s=\sqrt{\frac{(29.15-30.26)^{2}+(28.45-30.26)^{2}+(30.92-30.26)^{2}+(29.25-30.26)^{2}+(32.09-30.26)^{2}+(31.67-30.26)^{2}}{5}} \\
s=\sqrt{\frac{(-1.11)^{2}+(-1.81)^{2}+(.66)^{2}+(-1.01)^{2}+(1.83)^{2}+(1.41)^{2}}{5}} \\
s=\sqrt{\frac{1.2321+3.2761+0.4356+1.0201+3.3489+1.9881}{5}} \\
s=\sqrt{\frac{11.3009}{5}} \quad s=\sqrt{2.26018} \quad s=1.5034=1.50
\end{gathered}
$$

