

## Chi Square



## Math Monday \#?

## Chi Square

In a certain species of flowering plant, the purple allele P is dominant to the yellow allele p.

A student performed a cross between a purple-flowered plant and a yellow-flowered plant. When planted, the 156 seeds that were produced from the cross matured into 92 plants with purple flowers and 64 plants with yellow flowers.

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.

## Math Monday \#2

## Chi Square

In a certain species of flowering plant, the purple allele P is dominant to the yellow allele p .
A student performed a cross between a purple-flowered plant and a yellow-flowered plant. When planted, the 156 seeds that were produced from the cross matured into 92 plants with purple flowers and 64 plants with yellow flowers.

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.


| Phenotype | Observed (0) | Expected (e) |
| :---: | :---: | :---: |
| Purple | 92 | 78 |
| Yellow | 64 | 78 |
|  | 156 |  |

## Math Monday \#2

## Chi Square

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.

## Chi Square



| Phenotype | Observed (0) | Expected (e) |
| :---: | :---: | :---: |
| Purple | 92 | 78 |
| Yellow | 64 | 78 |

$$
x^{2}=\frac{(92-78)^{2}}{78}+\frac{(64-78)^{2}}{78}
$$

## Math Monday \#?

## Chi Square

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.

$$
\begin{gathered}
x^{2}=\frac{(92-78)^{2}}{78}+\frac{(64-78)^{2}}{78} \\
x^{2}=\frac{(14)^{2}}{78}+\frac{(-14)^{2}}{78} \\
x^{2}=\frac{196}{78}+\frac{196}{78} \\
x^{2}=2.51+2.51=5.02
\end{gathered}
$$

## Math Monday \#2

## Chi Square

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flower-color gene. Give your answer to the nearest tenth.

| Phenotype | Observed (0) | Expected (e) | $(0-e)$ | $(0-e)^{2}$ | $\left((0-e)^{2} / e\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Purple | 92 | 78 | 14 | 196 | 2.51 |
| Yellow | 64 | 78 | -14 | 196 | 2.51 |
| Total |  |  |  | 5.0 |  |

## Chi-Square Table

| $p$ <br> value | Degrees of Freedom |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| 0.05 | 3.84 | 5.99 | 7.81 | 9.49 | 11.07 | 12.59 | 14.07 | 15.51 |  |
| 0.01 | 6.63 | 9.21 | 11.34 | 13.28 | 15.09 | 16.81 | 18.48 | 20.09 |  |

## Example Problem

## Chi Square

In pea plants, smooth seeds are dominant to wrinkled, and purple flowers are dominant to white. In a dihybrid cross where 9:3:3:1 ratio is expected, the following data was collected:

Smooth and Purple $=223$
Smooth and White $=84$
Wrinkled and Purple $=89$
Wrinkled and White $=33$
Determine the chi square value. Round to the nearest hundredths.

## Chi Square



## Example Problem

## Chi Square

In pea plants, smooth seeds are dominant to wrinkled, and purple flowers are dominant to white. In a dihybrid cross where 9:3:3:1 ratio is expected, the following data was collected:

Smooth and Purple $=223$
Smooth and White $=84$
Wrinkled and Purple $=89$
Wrinkled and White $=33$
Determine the chi square value. Round to the nearest hundredths.

| Phenotype | Observed (0) | Expected (e) | $(0-e)$ | $(0-e)^{2}$ | $\left((0-e)^{2} / e\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Smooth \& Purple | 223 | 241.313 | -18.313 | 305.366 | 1.390 |
| Smooth \& White | 84 | 80.438 | 3.562 | 12.688 | 0.158 |
| Wrinkled \& Purple | 89 | 80.438 | 8.562 | 73.308 | 0.911 |
| Wrinkled \& White | 33 | 26.813 | 6.187 | 38.279 | 1.428 |
| Total | 429 |  |  | 3.887 |  |

