

Hardy-Weinberg

$$
p^{2}+2 p q+q^{2}=1
$$

$$
p+q=1
$$

Identification of Variables

$p=$ frequency of allele 1 (dominant) $\quad q=$ frequency of allele 2 (recessive)

Hardy-Weinberg

$$
\begin{aligned}
& p^{2}+2 p q+q^{2}=1 \\
& \mathbf{2 p q}=\begin{array}{c}
\text { frequency of allele } \mathbf{1} / \text { allele } \mathbf{2} \\
\text { (heterozygous) }
\end{array}
\end{aligned}
$$

$p^{2}=$ frequency of homozygous allele 1 (homozygous dominant)
$q^{2}=$ frequency of homozygous allele 2 (homozygous recessive)

Math Monday \#2

Hardy-Weinberg

In a population of penguins, the fluffy feathers (F) is dominant to smooth feathers (f . If 15% of the population shows smooth feathers, what percentage of the population, to the nearest tenth, is heterozygous of fluffy feathers.

47.4%

p	q	p^{2}	2 pq	q^{2}
0.613	0.387	0.376	0.474	0.15

Practice Problem

Hardy-Weinberg

In a population of trogons (a type of bird) tail banding (B) is dominant to no tail banding (b). If 68% of the population shows tail banding, what percentage to the nearest tenth, is heterozygous for tail banding.

p	q	p^{2}	2 pq	q^{2}
0.434	0.566	0.188	0.491	0.32

