

Identification of Variables

- p = frequency of allele 1 (dominant)

Hardy Weinberg			
$p^2 = \frac{AA}{total}$	$2pq = \frac{Aa}{total}$	$q^2 = \frac{aa}{total}$	
*	$p = \frac{2(AA) + 1(Aa)}{totalx2}$)	
	$ q = \frac{2(aa) + 1(Aa)}{totalx2} $		

q = frequency of allele 2 (recessive)

aa = number of individuals homozygous allele ? (homozygous recessive) q² = frequency of homozygous allele ? (homozygous recessive)

Aa = number of individuals with allele 1/allele 2 (heterozygous) 2pq = frequency of allele 1/allele 2 (heterozygous)

Math Monday #3

Hardy-Weinberg

A cruise ship is stranded on a desert island. There are 400 individuals aboard. There are 200 individuals with sickle cell trait (carriers), 150 unaffected individuals, and 50 individuals with sickle cell disease (homozygous recessive).

Math Monday #3

Hardy-Weinberg

A cruise ship is stranded on a desert island. There are 400 individuals aboard. There are 200 individuals with sickle cell trait (carriers), 150 unaffected individuals, and 50 individuals with sickle cell disease (homozygous recessive).

Example Problem

Hardy-Weinberg

In a given population, only the "A" and "B" alleles are present in the ABO system; there are no individuals with type "O" blood or with O alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the allelic frequencies of this population (i.e., what are p and q)?

Example Problem

Hardy-Weinberg

In a given population, only the "A" and "B" alleles are present in the ABO system; there are no individuals with type "O" blood or with O alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the allelic frequencies of this population (i.e., what are p and q)?

$n^2 - \frac{200}{200} - 0.667$	$n = \frac{2(200) + 1(75)}{2}$	$q = \frac{2(25) + 1(75)}{2}$
$p = \frac{1}{300} = 0.007$	p = 300 x 2	' 300 x 2
$2pq = \frac{75}{300} = 0.25$	$p = \frac{400 + 75}{600}$	$q = \frac{50 + 75}{600}$
$q^2 = \frac{25}{300} = 0.083$	$p = \frac{475}{600} = 0.792$	$q = \frac{125}{600} = 0.208$