
p = frequency of allele 1 (dominant)
$A A=$ number of individuals homozygous allele 1 (homozygous dominant)

$$
\mathrm{p}^{2}=\text { frequency of homozygous allele } 1
$$

(homozygous dominant)

Hardy Weinberg

$$
\begin{array}{r}
p^{2}=\frac{A A}{\text { total }} \quad 2 p q=\frac{A a}{\operatorname{total}} \quad q^{2}=\frac{a a}{\text { total }} \\
p=\frac{2(A A)+1(A a)}{\operatorname{totalx} 2} \\
q=\frac{2(a a)+1(A a)}{\text { totalx } 2}
\end{array}
$$

Hardy Weinberg

$p^{2}=\frac{A A}{\text { total }}$
$2 p q=\frac{A a}{\text { total }}$ $q^{2}=\frac{a a}{\text { total }}$

$$
\begin{aligned}
& p=\frac{2(A A)+1(A a)}{\operatorname{totalx} 2} \\
& q=\frac{2(a a)+1(A a)}{\operatorname{totalx} 2}
\end{aligned}
$$

Math Monday \#3

Hardy-Weinberg

A cruise ship is stranded on a desert island. There are 400 individuals aboard. There are 200 individuals with sickle cell trait (carriers), 150 unaffected individuals, and 50 individuals with sickle cell disease (homozygous recessive).

Hardy Weinberg

$$
\begin{gathered}
p^{2}=\frac{150}{400}=0.375 \underbrace{p^{2}=\frac{A A}{\text { total }}} \begin{array}{c}
2 p q=\frac{A a}{\text { total }} \\
q^{2}=\frac{a a}{\text { total }}
\end{array} \quad q^{2}=\frac{50}{400}=0.125 \\
2 p q=\frac{200}{400}=0.5
\end{gathered}
$$

Math Monday \#3

Hardy-Weinberg

A cruise ship is stranded on a desert island. There are 400 individuals aboard. There are 200 individuals with sickle cell trait (carriers), 150 unaffected individuals, and 50 individuals with sickle cell disease (homozygous recessive).

Hardy Weinberg

$$
\begin{aligned}
& p^{2}=\frac{A A}{\text { total }} \quad 2 p q=\frac{A a}{\text { total }} \quad q^{2}=\frac{a a}{\text { total }} \\
& p=\frac{2(A A)+1(A a)}{\operatorname{totalx} 2} \\
& q=\frac{2(a a)+1(A a)}{\operatorname{totalx} 2}
\end{aligned}
$$

$$
p=\frac{2(150)+1(200)}{400 \times 2}
$$

$$
q=\frac{2(50)+1(200)}{400 \times 2}
$$

$$
\begin{array}{ll}
p=\frac{300+200}{800} & q=\frac{100+200}{800} \\
p=\frac{500}{800}=0.625 & q=\frac{300}{800}=0.375
\end{array}
$$

Example Problem

Hardy-Weinberg

In a given population, only the " A " and " B " alleles are present in the ABO system; there are no individuals with type " 0 " blood or with 0 alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the allelic frequencies of this population (i.e., what are p and q)?

Example Problem

Hardy-Weinberg

In a given population, only the " A " and " B " alleles are present in the ABO system; there are no individuals with type " 0 " blood or with 0 alleles in this particular population. If 200 people have type A blood, 75 have type $A B$ blood, and 25 have type B blood, what are the allelic frequencies of this population (i.e., what are p and q)?

$$
\begin{array}{rlc}
p^{2}=\frac{200}{300}=0.667 & p=\frac{2(200)+1(75)}{300 \times 2} & q=\frac{2(25)+1(75)}{300 \times 2} \\
2 p q=\frac{75}{300}=0.25 & p=\frac{400+75}{600} & q=\frac{50+75}{600} \\
q^{2}=\frac{25}{300}=0.083 & p=\frac{475}{600}=0.792 & q=\frac{125}{600}=0.208
\end{array}
$$

