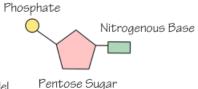


AP Biology Insta-Review


Big Idea 3: Information Storage & Transmission

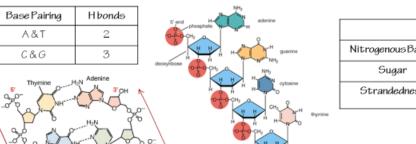
Tiffany Jones

@apbiopenguins

Structure

- Composed of C, H, O, N, & P
- Monomer: Nucleotide
- Bond: Phosphodiester linkage (between phosphate and hydroxyl)
- Directionality: $5' \rightarrow 3'$; antiparallel

Nitrogenous Bases


Purine:

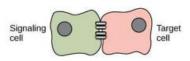
A&G

Pyrimidine:

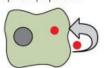
C, U, T

1.6: Nucleic Acids

DNA vs. RNA


	DNA	RNA	
NitrogenousBases	A, T, C, G	A, U, C, G	
Sugar	Deoxyribose	Ribose	
Strandedness	"double"	"single"	

4.1 Cell Communication

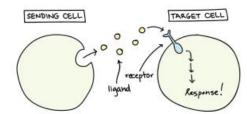

Cell-to-Cell Contact

- Cell communication where two cells are in direct contact with one another
- Example: Helper T cell binds to antigen presenting cell

Autocrine Signaling

- · Signaling to the same cell
- · Example: Apoptosis

Paracrine Signaling



- Signaling molecule released into extracellular fluid and binds to nearby cell
- · Example: Growth Factor

Endocrine Signaling

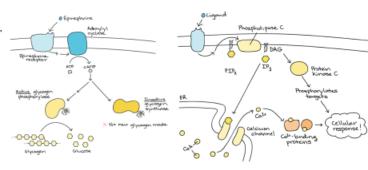
- Long distance signaling through bloodstream
- Example: Insulin released by pancreas and binds to body cells for glucose uptake

4.2/4.3 Signal Transduction

Reception

Ligand (signaling molecule) binds to receptor Causes confirmational shape change Ex: G protein coupled receptor

Steroid Hormone

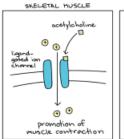

Release: Simple Diffusion Receptor: Intracellular Example: Testosterone, Estrogen

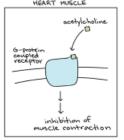
Protein Hormone

Release: Exocytosis Receptor: Extracellular Example: Insulin

Response

cell growth
secretion of molecules
gene expression
apoptosis


Transduction


Signaling cascades relay signals from receptors to cell targets, often amplifying the incoming signals

Phosphorylation Cascade

Protein Kinase Phosphorylate relay molecules Secondary Messengers

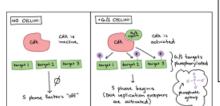
Ca²⁺ cAMP

4.4 Changes in Signal Trans. Pathway

Mutations in any domain of the receptor protein or in any component of the signaling pathway may affect the downstream components by altering the subsequent transduction of the signal.

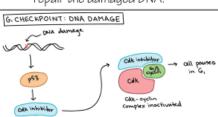
Chemicals that interfere with any component of the signaling pathway may activate or inhibit the pathway.

4.7 Regulation of Cell Cycle

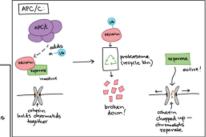

Checkpoints

Checkpoints

During G_1 , determines whether to complete the cell cycle


- Growth factor
- Adequate reserves
- Check for DNA damage

If do not pass, enter G_0 (nondividing state)



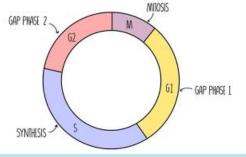
Check all DNA replicated and not damaged.

If detect problems with DNA, the cell cycle is halted, to complete DNA replication or repair the damaged DNA.

Check sister chromatids attached to the spindle microtubules

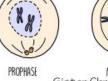
Replication of Duplication of cell genetic material and organelles

Synthesis of proteins, RNA, and building blocks


Gi

centrosomes

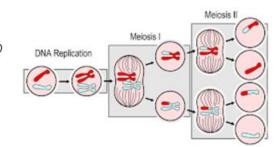
Interphase


The cell grows through all the different phases of interphase Synthesis of proteins and RNA Makes organelles Reorganizes cellular

contents

4.6 Cell Cycle

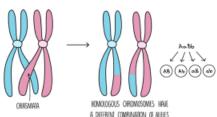
TWO new nuclei are formed



Function

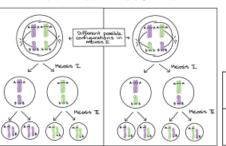
Formation of HAPLOID gamete cells in sexually reproducing organisms

Result


Daughter cells with half the number of chromosomes as parent cell

5.1 Meiosis

	Parent Cell Ploidy	Rounds of DNA Replication	Rounds of Nuclear Division	Daughter Cell Ploidy	Number of Daughter Cells
Mitosis	Diploid	1	1	Diploid	2
Meiosis	Diploid	1	2	Haploid	4


Prophase I

Chromatin condenses Sister chromatids/ homologous chromosomes align CROSSING OVER

Metaphase I

HOMOLOGOUS CHROMOSOMES align on the metaphase plate INDEPENDENT ASSORTMENT

Anaphase

HOMOLOGOUS CHROMOSOMES separate to opposite poles

Telophase

Nuclear envelope forms around the HAPLOID dauahter cells

Meiosis I	Homologous Chromosomes
Meiosis II	Sister Chromatids

5.2 Meiosis & Genetic Diversity

Chromatin condenses Sister chromatids alian

Prophase II

SISTER CHROMATIDS align on the metaphase plate

Metaphase II

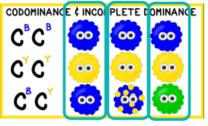
SISTER CHROMATIDS separate to opposite poles Anaphase II

Nuclear envelope forms around the HAPLOID dauahter cells

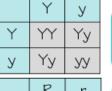
Telophase I

5.3 Mendelian Genetics

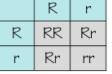
Complete Dominance


Homozygous dominant and heterozygous look the same

Codominance


Heterozygous is both dominant traits in organism

Incomplete Dominance


Heterozygous is a blend between the two dominant traits

Mendel's laws of segregation and independent assortment can be applied to genes on different chromosomes

Yellow: 3/4 Green: 1/4

Round: 3/4 Wrinkled: 1/4

Yellow & Round: 34 x 34 = 9/16 Yellow & Wrinkled: 34 x 1/4 = 3/16 Green & Round: 1/4 x 3/4 = 3/16 Green & Wrinkled: 1/4 x 1/4 = 1/16

RELEVANT EQUATION

Laws of Probability-If A and B are mutually exclusive, then: P(A or B) = P(A) + P(B)If A and B are independent, then: $P(A \text{ and } B) = P(A) \times P(B)$

Monohybrid

Heterozygous for ONE trait Complete Dominance: 3:1 ratio Incomplete or Codominance:

1:2:1 Dihybrid

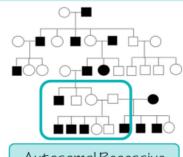
Heterozygous for TWO traits Complete Dominance: 9:3:3:1 ratio Incomplete or Codominance: 6:3:3:2:1:1

5.4/5.3 Non-/Mendelian Genetics

Autosomal Inheritance

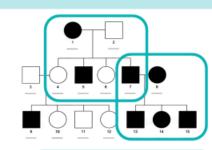
Allele is located on an autosome (non-sex chromosome)

Sex-Linked

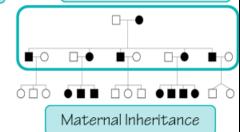

Allele is located on a sex chromosome

Maternal Inheritance


Allele is located on the DNA found in a mitochondrial or chloroplast


Linked Genes

Genes located on the same chromosome closely together



Autosomal Recessive

Sex-Linked Recessive

Prokaryote

- · Single DNA molecule
- Circular DNA molecule
- No introns

Genetic information (DNA/RNA) is passed to subsequent generations

BOTH has plasmids (small extra-chromosomal, double stranded, circular DNA)

Eukaryote

- · Multiple DNA molecules
- Linear DNA molecules
- Introns

6.1: DNA & RNA Structure

Base Pairing H bonds A & T/U 2 3 C&G

DNA vs. RNA

	DNA	RNA	
Nitrogenous Bases	A, T, C, G	A, U, C, G	
Sugar	Deoxyribose	Ribose	
Strandedness	"double"	"single"	

6.2 Replication

EUKARYOTE

Primase + DNA pol. III

DNA pol. III

Replication Fork

DNA synthesized in 5' to 3' direction

Lagging strand replication is discontinuous

- DNA POLYMERASE

Location

- · Eukaryotes: nucleus
- · Prokaryotes: nucleoid

Structure

- · Eukaryotes: multiple linear
- Prokaryotes: single circular

Important Enzymes

- Helicase unwinds the DNA strands
- · Topoisomerase relaxes supercoiling in front of the replication fork.
- · Primase synthesizes the RNA primer (DNA polymerase requires RNA primers to initiate DNA synthesis).
- DNA polymerase synthesizes new leading strand and discontinuously on the the lagging strand.
- · Ligase joins the fragments on the lagging strand.

Reminders about DNA:

- DNA made up of:
 - nitrogenous base (A, T, C, G)
 - pentose sugar (deoxyribose)
 - phosphate group
- Purine (A/G) have a double ring structure
- Pyrimidine (C/T) have a single ring structure
- Base Pair Rules
 - A & T with 2 H bonds
 - C & G with 3 H bonds
- Sidedness
 - 5' end: phosphate
- 3' end: hydroxyl group
- Directionality
 - Read 3' to 5'
- Synthesize 5' to 3'

(Remember ANTIPARALLEL)

Location

- Eukaryotes: nucleus
- · Prokaryotes: nucleoid (cytosol)

Reminders about RNA:

- · DNA made up of:
 - nitrogenous base (A, U, C, G)
 - pentose sugar (ribose)
 - phosphate group
- · Purine (A/G) have a double ring structure
- Pyrimidine (C/U) have a single ring structure
- Base Pair Rules
 - A & T(DNA)/U(RNA) with 2 H bonds
 - C & G with 3 H bonds
- Sidedness
 - 5' end: phosphate
 - 3' end: hydroxyl group
- Directionality
 - Read 3' to 5'
- Synthesize 5' to 3'

Important Enzyme & Components

6.3 Transcription and RNA Processing

6.4 Translation

- · RNA polymerase synthesizes mRNA molecules in the 5' to 3' direction by reading the template DNA strand in the 3' to 5' direction.
- Promoter: site where RNA polymerase binds to start transcription
- · Transcription Factors: activators/inhibitors to turn on/off gene expression

Template Strand (noncoding strand, minus strand, or antisense strand)

RNA POLYMERASE

6.3 Transcription and RNA Processing

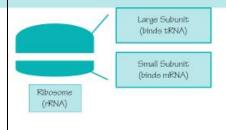
5' Guanine Cap

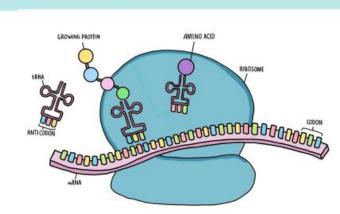
Signals the "start" of the mRNA transcript for ribosome to bind

 Removal of introns from pre-mRNA transcript

Polv-A Tail

· Inhibits degradation from hydrolytic enzymes in




Location

- Eukaryotes: cytosol/rough ER
- · Prokaryotes: cytosol

Steps of Translation

- · Initiation: start codon (AUG)
- Elongation: base pair between tRNA/mRNA with amino acid added
- Termination: stop codon (UAG, UAA, UGA)

6.5 Regulation of Gene Expression

Regulatory sequences are stretches of DNA that interact with regulatory proteins to control transcription

Repressible Operon

Starts: ON

Repressor: INACTIVE

If trp is present...

Trp binds to repressor to ACTIVATE

Repressor binds to operator to turn

the operon OFF

Epigenetic changes can affect gene expression through reversible modifications of DNA or histones

- Methylation (DNA): inhibit
- Acetylation (histone): activate

The phenotype is determined by combination of genes expressed and the levels of expression-

- cell differentiation
- · induction of transcription factors during development

Operon

Example: Trp Operon Gene Regulation found in prokaryotes synthesizes tryptophan

Site when repressor binds

<u>Genes</u> DNA

Inducible Operon

Example: Lac Operon synthesizes enzymes to break down lactose

Starts: OFF Repressor: ACTIVE

If lactose is present... lactose binds to repressor to INACTIVATE Repressor no longer binds to operator to turn the operon ON

Promoter

Site when RNA polymerase binds

Operator

6.7 Mutations

Point Mutations

Mutation at one nucleotide base pair

Silent

no chanae in amino acid (AA)

Missense

change from one AA to another AA

Nonsense

change from AA to STOP codon

Frameshift

insertion/deletion of 1 or 2 nucleotide base pairs shifts the reading frame for codons

ORIGINAL DNA: corresponds to the amino acid leucine

Chromosomal Mutations

Rearrangement of chromosome parts or changes in chromosome numbers

Rearrangement

Insertion

Deletion

Duplication

Inversion

Translocation

Changes in Chromosome Number

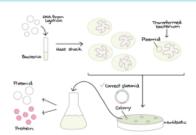
Nondisjunction Polyploidy

Gel Electrophoresis

Separate molecules based on size and charae

Polymerase Chain Reaction (PCR)

Makes multiple copies of DNA fragments


<u>Steps</u>

Heatina

- Coolina
- Annealina

PCR Process (ONE Cycle) 1. Denaturing Managhille: 55°C - Primers bind template 2. Annealing TO SERVICE 72°C - Synthesise new strand 3. Extension

6.8 BioTechnology

Bacterial Transformation

Introduce genetic material (plasmid) to bacteria

DNA Sequencing

Use radioactive nucleotides to determine the sequence of a DNA strand

MWW.

Communication

Signaling allows for changes in behaviors of organisms to allow for differential reproductive success

Types of Communication:

- Visual
- Auditory
- Electrical
- Chemical

Function:

- Indicate Dominance
- Foraging (Finding Food)
- · Establish Territory
- · Ensure Reproductive Success

Altruistic Behaviors

Reduces individual fitness but increases inclusive fitness.

8.1 Responses to Environment

Intersexual Selection

Reproductive behaviors to attract a mate Individuals of one sex choose members of the opposite sex

Examples

- · Blue Footed Booby mating dance (visual)
 - Frogs croaking (auditory)
 - Pheromones (chemical)

Intrasexual Selection

Reproductive behaviors to indicate dominance and compete for access to mates

Examples

- · Deer: antler size
- · Horned Beetles: strength and size of "horn"