

Welcome to Saturday Sessions!

AP Biology

AP Biology students are penguins because they are dressed for success!

You are now an AP Bio Penguin!

Favorite Resources

AP Bio Penguins

- @apbiopenguins (Instagram, Twitter, YouTube & TikTok)
- Website: apbiopenguins.weebly.com
- AP Biology Review Guide
- TONS of Review PowerPoints

Additional Resources

- Podcast: @theapsoluterecap
- YouTube: Bozeman Biology
- Review Book: Barron's (7th Edition)
- TikTok: @mrssloanbiology or @a_biology_teacher

Exam Options

Paper Administration

- May 14th @ 8am Local
- Traditional Exam: 60 MC/2 Long + 4 Short FRQ

Digital Administration

- May 27th @ 12pm Eastern
 OR
- June 11th @ 12pm Eastern
- Traditional Exam: 60 MC/2 Long + 4 Short FRQ
- Students will not be asked to draw or graph as part of their response (#2 or #5)

Pace Yourself Present Practice Persevere Penguin

Science Practice 5 Statistical Tests and Data Analysis:

- Perform statistical tests and mathematical calculations to analyze and interpret data.
- 5.A: Perform mathematical calculations, including
 - a. Mathematical equations in the curriculum.
 - b. Means.
 - c. Rates.
 - d. Ratios.
 - e. Percentages.
- 5.C Perform chi-square hypothesis testing.

Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: 104 g, 82 g, 121 g, 96 g, 108 g, 73 g. What is the average weight of a tomato after treatment?

$$n = 6$$

$$\bar{x} = \frac{1}{6} \sum_{i=1}^{6} x_i$$

$$\bar{x} = \frac{1}{6}(104 + 82 + 121 + 96 + 108 + 73)$$

Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\bar{x} = \frac{1}{6}(584)$$

$$\bar{x} = 97.3$$

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: 104 g, 82 g, 121 g, 96 g, 108 g, 73 g. What is the average weight of a tomato after treatment?

Mean

Button: "STAT"

Select Edit -> 1:Edit

Button: "ENTER"

Under L1, enter the values

Quit back to main screen by: Button "2nd" then "MODE"

Button: "STAT"

Select Calc -> 1: 1-Var Stats

Button: "ENTER"

Button: "ENTER"

The mean is the \bar{x}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Standard Deviation

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: 104 g, 82 g, 121 g, 96 g, 108 g, 73 g. What is the average weight of a tomato after treatment?

$$N = 6$$

$$s = \sqrt{\frac{(104 - 97.3)^2 + (82 - 97.3)^2 + (121 - 97.3)^2 + (96 - 97.3)^2 + (108 - 97.3)^2 + (73 - 97.3)^2}{5}}$$

$$s = \sqrt{\frac{\sum (x_i - 97.3)^2}{6 - 1}}$$

$s = \sqrt{\frac{(6.7)^2 + (-15.3)^2 + (23.7)^2 + (-1.3)^2 + (10.7)^2 + (-24.3)^2}{5}}$

Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

$$s = \sqrt{\frac{44.89 + 234.09 + 561.69 + 1.69 + 114.49 + 590.49}{5}}$$

$$s = \sqrt{\frac{1547.34}{5}} \qquad s = \sqrt{309.468} \qquad s = 17.59$$

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: 104 g, 82 g, 121 g, 96 g, 108 g, 73 g. What is the average weight of a tomato after treatment?

Standard Deviation

Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Button: "STAT"

Select Edit -> 1:Edit

Button: "ENTER"

Under L1, enter the values

Quit back to main screen by: Button "2nd" then "MODE"

Button: "STAT"

Select Calc -> 1: 1-Var Stats

Button: "ENTER"

Button: "ENTER"

The standard deviation is the Sx

Standard Error of Mean

$$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Standard Error of Mean

Treatment of tomato plants with a growth hormone yielded the following weights of tomatoes: 104 g, 82 g, 121 g, 96 g, 108 g, 73 g. What is the average weight of a tomato after treatment?

$$n = 6$$

 $s = 17.59$

$$SE_{\bar{x}} = \frac{17.59}{\sqrt{6}}$$

$$SE_{\bar{x}} = \frac{17.59}{2.449}$$

$$SE_{\bar{x}} = 7.18$$

Standard Error of Mean

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

Chi Square

$$x^2 = \sum \frac{(o-e)^2}{e}$$

In a certain species of flowering plant, the purple allele P is dominant to the yellow allele p.

A student performed a cross between a purple-flowered plant and a yellow-flowered plant. When planted, the 156 seeds that were produced from the cross matured into 92 plants with purple flowers and 64 plants with yellow flowers.

Calculate the chi-squared value for the null hypothesis that the purple-flowered parent was heterozygous for the flowercolor gene. Give your answer to the nearest tenth.

Purple (P) > yellow (p)

 $Pp \times pp = 92$ purple flowers and 64 yellow flowers, 156 total

$$x^2 = \sum \frac{(o-e)^2}{e}$$

Purple Yellow

o = observed o = 92 o = 64

e = expected e = 78 e = 78

Chi Square

$$x^2 = \sum_{e} \frac{(o-e)^2}{e}$$

$$x^2 = \frac{(92 - 78)^2}{78} + \frac{(64 - 78)^2}{78}$$

$$x^2 = \frac{(14)^2}{78} + \frac{(-14)^2}{78}$$

$$x^2 = \frac{196}{78} + \frac{196}{78}$$

$$x^2 = 2.51 + 2.51$$

$$x^2 = 5.02 = 5.0$$

$$X^2 = 5.0$$

Chi-Square Table

p	Degrees of Freedom							
value	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09

 $X^2=5.0 > Table\ value=3.84$ Reject the null hypothesis (the purple plant was not heterozygous)

Laws of Probability

If A and B are mutually exclusive, then: P(A or B) = P(A) + P(B)

If A and B are independent, then: $P(A \text{ and } B) = P(A) \times P(B)$

In pea plants, smooth seeds are dominant to wrinkled, and purple flowers are dominant to white. In a dihybrid cross, what is the phenotypic ratio?

	S	5
S	55	S5
5	55	55

	P	р
P	PP	Pp
р	Pp	pp

Laws of Probability

If A and B are mutually exclusive, then: P(A or B) = P(A) + P(B)

If A and B are independent, then: $P(A \text{ and } B) = P(A) \times P(B)$ Smooth: $\frac{1}{4} + \frac{1}{2} = \frac{3}{4}$

wrinkled: 1/4

Purple: $\frac{1}{4} + \frac{1}{2} = \frac{3}{4}$

white: 1/4

In pea plants, smooth seeds are dominant to wrinkled, and purple flowers are dominant to white. In a dihybrid cross, what

is the phenotypic ratio?

Smooth: 34

Wrinkled: 1/4

Purple: 34

White: 1/4

Laws of Probability

If A and B are mutually exclusive, then: P(A or B) = P(A) + P(B)

If A and B are independent, then: $P(A \text{ and } B) = P(A) \times P(B)$ Smooth & Purple: 34 x 34 = 9/16

Smooth & White: 34 x 14 = 3/16

Wrinkled & Purple: $\frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$

Wrinkled & White: 1/4 x 1/4 = 1/16

Hardy Weinberg

$$p^2 + 2pq + q^2 = 1$$

$$p + q = 1$$

Identification of variables in equation:

p = frequency of allele 1 (dominant)

q = frequency of allele 2 (recessive)

 p^2 = frequency of homozygous allele 1 (homozygous dominant)

2pq = frequency of allele 1/allele 2 (heterozygous)

 q^2 = frequency of homozygous allele 2 (homozygous recessive)

Hardy Weinberg

$$p^2 + 2pq + q^2 = 1$$

$$p + q = 1$$

In a population of penguins, the fluffy feathers (F) is dominant to smooth feathers (f). If 15% of the population shows smooth feathers, what percentage of the population, to the nearest tenth, is heterozygous of fluffy feathers.

p	q	p ²	2pq	q^2
0.61	0.39	0.37	0.48	0.15

Hardy Weinberg

$$p^2 + 2pq + q^2 = 1$$

$$p + q = 1$$

Heterozygous = 0.5

Hardy Weinberg

$$p = \frac{2(AA) + 1(Aa)}{total}$$

$$q = \frac{2(aa) + 1(Aa)}{total}$$

Hardy-Weinberg

A cruise ship is stranded on a desert island. There are 400 individuals aboard. There are 200 individuals with sickle cell trait (carriers), 150 unaffected individuals, and 50 individuals with sickle cell disease (homozygous recessive).

$$p^{2} = \frac{150}{400} = 0.375$$
$$2pq = \frac{200}{400} = 0.5$$
$$q^{2} = \frac{50}{400} = 0.125$$

Hardy Weinberg

$$p = \frac{2(AA) + 1(Aa)}{total}$$
$$q = \frac{(2aa) + 1(Aa)}{total}$$

$$p = \frac{2(AA) + 1(Aa)}{total}$$

$$p = \frac{2(150) + 1(200)}{400 \times 2}$$

$$p = \frac{300 + 200}{800}$$

$$p = \frac{500}{800} = 0.62$$

$$q = \frac{2(aa) + 1(Aa)}{total}$$

$$q = \frac{2(50) + 1(200)}{400 \times 2}$$

$$q = \frac{100 + 200}{800}$$

$$q = \frac{300}{800} = 0.375$$

Mrs. Mason

Ms. Taylor

Ms. Nolte

Dr. Tatum

Ms. Carroll

Mrs. Phillips

Mrs. Rhinehart

Mrs. Halsell

Mrs. Brewer

Mrs. Mundy

Mrs. Jensen (Steele Canyon HS)

Mr. Roach (BBP)

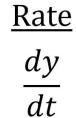
Mr. Shields(UHS)

Mrs. Mills

Rate

 $\frac{dy}{dt}$

1	5	Rate
4		


Time (min)	Amount of O ₂ produced (mL)
1	2.5
2	3.1
3	4.3
4	5.7
5	5.9

Hydrogen peroxide is broken down to water and oxygen by the enzyme catalase. The following data were taken over 5 minutes. What is the rate of enzymatic reaction in mL/min from 2 to 4 minutes? Round to the nearest hundredth.

$$\frac{dy}{dt} = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

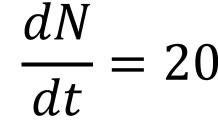
$$\frac{dy}{dt} = \frac{(5.7 - 3.1)}{(4 - 2)}$$

$$\frac{dy}{dt} = \frac{(2.6)}{(2)} = 1.3$$

Population Growth

$$\frac{dN}{dt} = B - D$$

In 2020, a population of penguins had 40 births and 20 deaths. Determine the population growth in 2020.

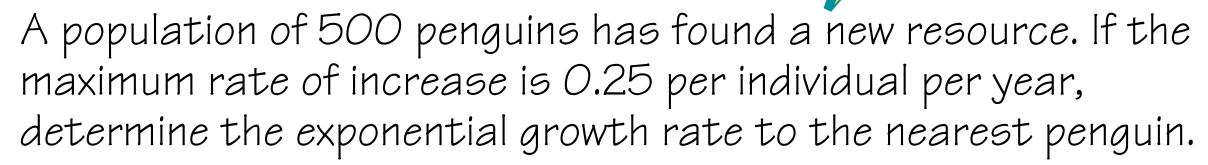

B = birth rate

D = death rate

$$\frac{dN}{dt} = 40 - 20$$

Population Growth

$$\frac{dN}{dt} = B - D$$


Exponential Growth

$$\frac{dN}{dt} = r_{max}N$$

 r_{max} = maximum per capita growth rate of population N = population size

Exponential Growth

$$\frac{dN}{dt} = r_{max}N$$

$$\frac{dN}{dt} = 0.25(500)$$

$$\frac{dN}{dt} = 125$$

$$\frac{dN}{dt} = r_{max} N \left(\frac{K - N}{K} \right)$$

A population of penguins has a carrying capacity of 650 individuals. If the maximum rate of increase is 0.25 per individual per year and a population size of 500, determine the logistic growth rate to the nearest penguin.

 r_{max} = maximum per capita growth rate of population

N = population size

K = carrying capacity

Logistic Growth

$$\frac{dN}{dt} = r_{max} N \left(\frac{K - N}{K} \right)$$

$$\frac{dN}{dt} = 0.25(500) \left(\frac{650 - 500}{650} \right)$$

$$\frac{dN}{dt} = 125 \left(\frac{150}{650}\right)$$

$$\frac{dN}{dt} = 125(0.231) = 28.85 = 29$$

$$1 - \sum_{N} \left(\frac{n}{N}\right)^2$$

In a community of penguins, there are three different types of penguins shown in the table below. Determine the Shannon

diversity index of the community.

n = total organisms of a particular species N = total number of organisms of all species

Simpson's Diversity
Index

$$1-\sum_{n=1}^{\infty}\left(\frac{n}{N}\right)^{2}$$

$$1 - \left[\left(\frac{6}{27} \right)^2 + \left(\frac{8}{27} \right)^2 + \left(\frac{13}{27} \right)^2 \right]$$

$$1 - [(0.222)^2 + (0.296)^2 + (0.481)^2]$$
$$1 - [0.369] = 0.631$$

Water Potential

$$\Psi = \Psi_P + \Psi_S$$

Water Potential

Scientists are trying to determine under what conditions a plant can survive. They collect the following data and would like to know the water potential of the plant cell. The solute potential is -0.6 MPa and the pressure potential is -1.0 MPa. What is the water potential.

$$\psi_S$$
 = solute potential ψ_P = pressure potential

Water Potential

$$\Psi = \Psi_P + \Psi_S$$

$$\Psi = -1.0 \text{ MPa} + -0.6 \text{ MPa}$$

$$\Psi = -1.6 \text{ MPa}$$

Solute Potential

$$\Psi_S = -iCRT$$

Identification of variables in equation:

i = ionization constant(1.0 for sucrose)

C = molar concentration

 $R = pressure\ constant$ ($R = 0.0831\ liter\ bars/mole\ K$)

T = temperature in Kelvin(°C + 273)

Solute Potential

$$\Psi_{\rm S} = -iCRT$$

Potato cores were placed in solutions of varying concentrations and were found to neither gain nor lose mass in a sucrose solution of 0.32M. Use this information to calculate the solute potential of the potato cores. The temperature of the solution is 22°C.

 $\Psi_{\rm S} = -1.0(0.32 \text{ M})(0.0831 \text{ liter bars/mole K})(295 \text{ K})$

$$\Psi_{\rm S} = -7.84 \, {\rm bars}$$

Solute Potential

$$\Psi_{\rm S} = -iCRT$$

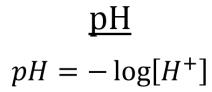
$$i = 1.0$$
 $C = 0.32 \text{ M}$ $T = 22^{\circ}\text{C}$ $R = 0.0831 \text{ liter bars/mole K}$ $T = (22^{\circ}\text{C} + 273) = 295 \text{ K}$

$$pH = -\log[H^+]$$

Compare the number of H⁺ ions in a solution with a pH of 4 to a solution with a pH of 8. If appropriate, include a negative sign in your answer.

$$4 = -log[H^+]$$

$$8 = -log[H^+]$$


$$10^{-4} = 10^{\log[H+]}$$

$$10^{-8} = 10^{\log[H+]}$$

$$10^{-4} = [H+]$$

$$10^{-8} = [H+]$$

pH of 4 has 10,000 more H+ ions

$$SA = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

Sphere

Identification of variables in equation:

SA = surface area

V = volume

r = radius

I = length

h = height

w = width

s = length of one side of a cube

Determine the surface area-to-volume ratio for a sphere with radius 2cm.

4

$$r = 2 cm$$

$$SA = 4\pi 2^2$$

$$V = \frac{4}{3}\pi 2^3$$

$$SA = 4\pi4$$

$$V = \frac{4}{3}\pi 8$$

$$SA = 16\pi$$

$$V = \frac{32}{3}\pi$$

$$SA = 4\pi r^2$$
$$V = \frac{4}{3}\pi r^3$$

$$\frac{SA}{V} = \frac{16\pi}{\frac{32}{3}\pi} = \frac{16\pi}{1} \times \frac{3}{32\pi} = \frac{3}{2}$$

$$SA = 2lh + 2lw + 2wh$$

$$V = lwh$$

Rectangular Solid

Determine the surface area-to-volume ratio for a rectangular solid with length of 2 cm, height of 3 cm, and width of 4 cm. SA = 2(2)(3) + 2(2)(4) + 2(4)(3)

$$l = 2 cm$$

$$h = 3 cm$$

$$w = 4 cm$$

Surface Area & Volume

$$SA = 2lh + 2lw + 2wh$$

$$V = lwh$$

$$SA = 2(2)(3) + 2(2)(4) + 2(4)(3)$$

 $SA = 12 + 16 + 24$
 $SA = 52$
 $V = (2)(4)(3)$

$$\frac{SA}{V} = \frac{52}{24} = \frac{13}{6} = 2.17$$

V = 24

$$SA = 2\pi rh + 2\pi r^2$$

$$V = \pi r^2 h$$

Cylinder

Determine the surface area-to-volume ratio for a cylinder with radius of 2 cm and height of 3 cm

$$r = 2 cm$$

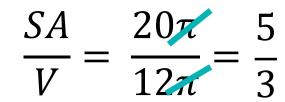
$$h = 3 cm$$

$$SA = 2\pi(2)(3) + 2\pi 2^2$$

$$SA = 2\pi6 + 2\pi4$$

$$SA = 12\pi + 8\pi = 20\pi$$

$$V = \pi 2^2 3$$


$$V = \pi(4)3$$

$$V = 12\pi$$

$$SA = 2\pi rh + 2\pi r^2$$

$$V = \pi r^2 h$$

$$SA = 6s^2$$

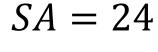
$$V = s^3$$

Cube

Determine the surface area-to-volume ratio for a cube with side length of 2 cm

$$s = 2 \, \text{cm}$$

$$SA = 6(2)^2$$


$$V = (2)^3$$

$$SA = 6(4)$$

$$V = 8$$

$$SA = 6s^2$$

$$V = s^3$$

$$\frac{SA}{V} = \frac{24}{8} = 3$$

Unit 8 Q&A @apbiopenguins 5/2 @ 8pm ET

