
Unit 2: Cell Structure and Function

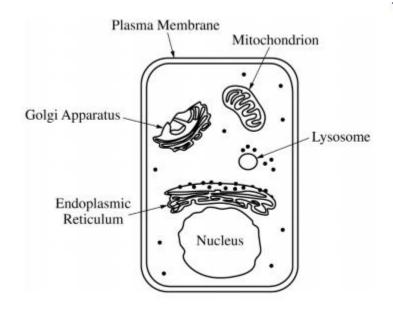
Торіс	Learning Objective(s)		
2.1	SYI-1.D Describe the structure and/ or function of subcellular components and $\ddot{\mathbf{w}}$		
Cell Structure:	organelles.		
Subcellular Components			
	SYI-1.E Explain how subcellular components and organelles contribute to the function		
2.2	of the cell.		
Cell Structure and Function	SYI-1.F Describe the structural features of a cell that allow organisms to capture,		
	store, and use energy		
	ENE-1.B Explain the effect of surface area-to-volume ratios on the exchange of		
2.3	materials between cells or organisms and the environment.		
Cell Size	ENE-1.C Explain how specialized structures and strategies are used for the efficient		
	exchange of molecules to the environment.		
2.4	ENE-2.A Describe the roles of each of the components of the cell membrane in		
2.4 Plasma Membranes	maintaining the internal environment of the cell.		
r lasma memoranes	ENE-2.B Describe the Fluid Mosaic Model of cell membranes.		
2.5	ENE-2.C Explain how the structure of biological membranes influences selective		
	permeability		
Membrane Permeability	ENE-2.D Describe the role of the cell wall in maintaining cell structure and function.		
	ENE-2.E Describe the mechanisms that organisms use to maintain solute and		
2.6	water balance.		
Membrane Transport	ENE-2.F Describe the mechanisms that organisms use to transport large molecules		
	across the plasma membrane.		
2.7	ENE-2.G Explain how the structure of a molecule affects its ability to pass through		
Facilitated Diffusion	the plasma membrane.		
	ENE-2.H Explain how concentration gradients affect the movement of molecules		
2.8	across membranes.		
Tonicity and Osmoregulation	ENE-2.1 Explain how osmoregulatory mechanisms contribute to the health and		
	survival of organisms.		
2.9	ENE-2.J Describe the processes that allow ions and other molecules to move		
Mechanisms of Transport	across membranes.		
2.10	ENE-2.K Describe the membrane-bound structures of the eukaryotic cell.		
2.10 Cell Compartmentalization	ENE-2.L Explain how internal membranes and membrane-bound organelles contribute		
	to compartmentalization of eukaryotic cell functions.		
2.11	EVO-1.A Describe similarities and/or differences in compartmentalization between		
Origins of Cell	prokaryotic and eukaryotic cells.		
Compartmentalization	EVO-1.B Describe the relationship between the functions of endosymbiotic organelles		
	and their free-living ancestral counterparts.		

Free Response Practice

The petal color of the Mexican morning glory (*Ipomoea tricolor*) changes from red to blue, and the petal cells swell during flower opening. The pigment heavenly blue anthocyanin is found in the vacuole of petal cells. Petal color is determined by the pH of the vacuole. A model of a morning glory petal cell before and after flower opening is shown in Table 1.

(a) **Identify** the cellular component in the model that is responsible for the increase in the pH of the vacuole during flower opening AND **describe** the component's role in changing the pH of the vacuole.

(b) A researcher claims that the activation of the K⁺/H⁺ transport protein causes the vacuole to swell with water. **Provide reasoning** to support the researcher's claim.


2018#6

Cystic fibrosis is a genetic condition that is associated with defects in the CFTR protein. The CFTR protein is a gated ion channel that requires ATP binding in order to allow chloride ions (CI⁻) to diffuse across the membrane.

(a) In the provided model of a cell, **draw** arrows to describe the pathway for production of a normal CFTR protein from gene expression to final cellular location.

(b) **Identify** the most likely cellular location of the ribosomes that synthesize CFTR protein.

(c) **Identify** the most likely cellular location of a mutant CFTR protein that has an amino acid substitution in the ATPbinding site.

2017 #8

Estrogens are small hydrophobic lipid hormones that promote cell division and the development of reproductive structures in mammals. Estrogens passively diffuse across the plasma membrane and bind to their receptor proteins in the cytoplasm of target cells.

(a) **Describe** ONE characteristic of the plasma membrane that allows estrogens to passively cross the membrane.

(b) In a laboratory experiment, a researcher generates antibodies that bind to purified estrogen receptors extracted from cells. The researcher uses the antibodies in an attempt to treat estrogen-dependent cancers but finds that the treatment is ineffective. **Explain** the ineffectiveness of the antibodies for treating estrogen-dependent cancers.

2013#6

The following data were collected by observing subcellular structures of three different types of eukaryotic cells.

RELATIVE AMOUNTS OF ORGANELLES IN THREE CELL TYPES

Cell Type	Smooth ER	Rough ER	Mitochondria	Cilia	Golgi Bodies
Х	Small amount	Small amount	Large number	Present	Small amount
Y	Large amount	Large amount	Moderate number	Absent	Large amount
Z	Absent	Absent	Absent	Absent	Absent

Based on an analysis of the data, **identify** a likely primary function of each cell type and **explain** how the data support the identification.

Free Response Scoring Guidelines

	2019 #8					
Part	Part Scoring Guidelines					
(a)	Identification (1 point)	2.7				
	• (K ⁺ /H ⁺) transport protein	2.8				
	Description (1 point)					
	• It moves H^+ out of the vacuole.					
(b)	Reasoning (1 point)					
	The concentration of solute (K ⁺) is increasing inside the vacuole.	2.8				
	 The solute (K⁺) is moving into the vacuole, making it hypertonic/hyperosmotic/lowering water potential. 					

	2018 #6		
Part	Scoring Guidelines		
(a)	Drawing (1 point)	2.1	
	Plasma Membrane Mitochondrion Golgi Apparatus Endoplasmic Reticulum Lysosome Endoplasmic Reticulum Use of the second		
(৮)	Identification (1 point) (Rough) Endoplasmic Reticulum/ER	2.1	
(c)	Identification (1 point) In the (cellular/plasma) membrane 	2.7	

	2017 #8					
Part	art Scoring Guidelines					
(a)	Description (1 point) Hydrophobic/nonpolar Space between phospholipids 					
(b)	 Explanation (2 points) Antibodies are unable to enter the cell. (Extracellular) antibodies will not bind to (intracellular) estrogen receptors. 					

				2013 #6				
Part	Scoring Guidelines					Topic		
	Cell Type	Identify function		Explain how data support identification (1 point each correct pair). NOTE: No points for identification without explanation.				2.1
	х	 Locomotion Movement / surface transport 	AND	Has cilia for movement <u>and</u> large amounts of mitochondria to provide energy for locomotion of cell itself (ciliated protist) or movement of particles (mucus /oocyte) along cell surface				
	Y	 Secretion / exocytosis Protein synthesis 	AND	Has large amounts of rough ER <u>and</u> Golgi t proteins	to produce a	nd package		
	Lipid/hormone synthesisDetoxification	AND	Has large amounts of smooth ER to produc	e lipids / ho	rmones			
		Transport	<u>OR</u>	Oxygen transport in animal cellsWater transport in plant cells	AND			
		Protection	<u>OR</u>	 Epidermal cells (stratum corneum, cork, nails) 	AND	Does not		
	Z	• Support	<u>OR</u>	Ground tissue (schlerenchyma)Vascular tissue (xylem)	AND	require these		
		Storage	<u>OR</u>	 Maximizes volume / space available (hemoglobin, oxygen) 	AND	organelles		
		No function	OR	• Is a dead cell/is undergoing apoptosis	AND			